

Línea Conducción Agua (Versión 2004)

SUMARIO - Línea Conducción Agua

CAPÍTULO 1 - FABRICACIÓN:

El Hierro Ductil	Pag. 09
Fabricación de los Productos	Pág. 12
Prueba en la Fábrica	Pág. 14
Calidad y Certificación ISO	Pág. 15
	S
CAPÍTULO 2 - PROYECTO:	
Necesidades / Recursos de Agua	Pág. 18
Diámetro (Determinación)	Pág. 21
Presión (Terminología)	Pág. 26
Presiones Máximas Admisibles	Pág. 28
Presiones Máximas Admisibles - Caño Clase K7	Pág. 29
Presiones Máximas Admisibles - Caño Clase K9	Pág. 30
Presiones Máximas Admisibles - Piezas con Enchufes	Pág. 31
Presiones Máximas Admisibles - Piezas con Bridas	Pág. 32
	1 0.8, 0.2
Dimensiones	Pág. 33
Coeficientes de Seguridad	Pág. 36
Perfil de la Cañería	Pág. 38
Golpe de Ariete	Pág. 41
Perdidas de Carga	Pág. 44
DN 80 a 150 Perdidas de Carga	Pág. 48
DN 200 a 300 Perdidas de Carga	Pág. 50
DN 350 a 450 Perdidas de Carga	Pág. 52
DN 500 a 700 Perdidas de Carga	Pág. 54
DN 800 a 900 Perdidas de Carga	Pág. 56
DN 1000 a 1200 Perdidas de Carga	Pág. 58
DN 1400 a 1600 Perdidas de Carga	Pág. 60
DN 1800 a 2000 Perdidas de Carga	Pág. 62
Comportamiento de las Cargas Externas	Pág. 64
Características Mecánicas de los Suelos	Pág. 66
Apertura de la Zanza y Relleno	Pág. 68
Alturas de Tapadas	Pág. 73

Terrenos Inestables	Pág. 77
Cruce de un Puente	Pág. 79
Instalación Aérea	Pág. 82
Instalación con Caño Camisa	Pág. 84
Instalación en Pendiente	Pág. 87
Elastómeros	Pág. 90
Junta Elástica - JGS	Pág. 93
Junta Mecánica - JM	Pág. 97
Junta Acerrojada Interna - JTI	Pág. 98
Junta Acerrojada Externa - JTE	Pág. 100
Junta Pamlock - JPK	Pág. 102
Junta con Bridas	Pág. 104
Empujes Hidráulicos	Pág. 106
Macizos (Bloques)	Pág. 108
Acerrojado	Pág. 112
Aguas Agresivas o Corrosivas	Pág. 115
Revestimientos Internos	Pág. 117
Mortero de Cemento	Pág. 118
Corrosividad de los suelos	Pág. 120
Revestimientos Externos	Pág. 123
Zinc	Pág. 124
Manga de Polietileno	Pág. 126
CAPÍTULO 3 - NOTAS TÉCNICAS - ASENTAMIENTO:	
Acondicionamiento	Pág. 129
Transporte	Pág. 131
Manipuleo	Pág. 132
Almacenamiento de los Caños	Pág. 134
Almacenamiento de los Aros de Goma	Pág. 137
Reparación del Revestimiento Externo	Pág. 138
Reparación del Revestimiento Interno	Pág. 139
Corte de los Caños	Pág. 141
Desovalización	Pág. 144
Montaje (Aparatos)	Pág. 146
Manga de Polietileno (Instalación)	Pág. 148

Desviación Angular	Pág.	152
Pasta Lubricante	Pág.	154
Montaje de la Junta JGS	Pág.	156
Montaje de la Junta JTI	Pág.	159
Montaje de la Junta JTE	Pág.	162
Soldadura (Cordón para Acerrojado)	Pág.	166
Montaje de la Junta Mecánica	Pág.	169
Montaje de la Junta con Bridas	Pág.	171
Prueba en la Obra	Pág.	173
Reparación y Mantenimiento	Pág.	176
CAPÍTULO 4 - NORMAS TÉCNICAS:		
Normas Técnicas Brasileñas	Pág.	179
Normas Técnicas Internacionales	Pág.	180
CAPÍTULO 5 - CONVERSÃO DE UNIDADES:		
Unidades Básicas, Suplementarias y derivadas	Pág.	183
Área, longitud y flujo de masa	Pág.	184
Fuerza, Masa y Potencia	Pág.	185
Fuerza, Masa y Potencia Presión, Caudal y Velocidad	Pág. Pág.	
	_	186
Presión, Caudal y Velocidad Volumen, Vol. de Líquidos y Trabajo, Energía, Cuantidad de	Pág.	186
Presión, Caudal y Velocidad Volumen, Vol. de Líquidos y Trabajo, Energía, Cuantidad de Calor	Pág.	186 187
Presión, Caudal y Velocidad Volumen, Vol. de Líquidos y Trabajo, Energía, Cuantidad de Calor CAPÍTULO 6 - DIMENSIONES DE LAS JUNTAS:	Pág.	186 187 189
Presión, Caudal y Velocidad Volumen, Vol. de Líquidos y Trabajo, Energía, Cuantidad de Calor CAPÍTULO 6 - DIMENSIONES DE LAS JUNTAS: Dimensiones Junta Elástica - JGS	Pág. Pág.	186 187 189 190
Presión, Caudal y Velocidad Volumen, Vol. de Líquidos y Trabajo, Energía, Cuantidad de Calor CAPÍTULO 6 - DIMENSIONES DE LAS JUNTAS: Dimensiones Junta Elástica - JGS Dimensiones Junta Mecánica - JM Dimensiones Junta Acerrojada Interna - JTI Dimensiones Junta Acerrojada Externa - JTE	Pág. Pág. Pág. Pág.	186 187 189 190 191
Presión, Caudal y Velocidad Volumen, Vol. de Líquidos y Trabajo, Energía, Cuantidad de Calor CAPÍTULO 6 - DIMENSIONES DE LAS JUNTAS: Dimensiones Junta Elástica - JGS Dimensiones Junta Mecánica - JM Dimensiones Junta Acerrojada Interna - JTI Dimensiones Junta Acerrojada Externa - JTE Dimensiones Junta Pamlock - JPK	Pág. Pág. Pág. Pág. Pág.	186 187 189 190 191 192
Presión, Caudal y Velocidad Volumen, Vol. de Líquidos y Trabajo, Energía, Cuantidad de Calor CAPÍTULO 6 - DIMENSIONES DE LAS JUNTAS: Dimensiones Junta Elástica - JGS Dimensiones Junta Mecánica - JM Dimensiones Junta Acerrojada Interna - JTI Dimensiones Junta Acerrojada Externa - JTE Dimensiones Junta Pamlock - JPK Dimensiones Junta con Bridas PN 10	Pág. Pág. Pág. Pág. Pág. Pág.	186 187 189 190 191 192 193
Presión, Caudal y Velocidad Volumen, Vol. de Líquidos y Trabajo, Energía, Cuantidad de Calor CAPÍTULO 6 - DIMENSIONES DE LAS JUNTAS: Dimensiones Junta Elástica - JGS Dimensiones Junta Mecánica - JM Dimensiones Junta Acerrojada Interna - JTI Dimensiones Junta Acerrojada Externa - JTE Dimensiones Junta Pamlock - JPK Dimensiones Junta con Bridas PN 10 Dimensiones Junta con Bridas PN 16	Pág. Pág. Pág. Pág. Pág. Pág. Pág. Pág.	186 187 189 190 191 192 193 194 195
Presión, Caudal y Velocidad Volumen, Vol. de Líquidos y Trabajo, Energía, Cuantidad de Calor CAPÍTULO 6 - DIMENSIONES DE LAS JUNTAS: Dimensiones Junta Elástica - JGS Dimensiones Junta Mecánica - JM Dimensiones Junta Acerrojada Interna - JTI Dimensiones Junta Acerrojada Externa - JTE Dimensiones Junta Pamlock - JPK Dimensiones Junta con Bridas PN 10	Pág. Pág. Pág. Pág. Pág. Pág. Pág. Pág.	186 187 189 190 191 192 193 194 195

CAPÍTULO 7 - CAÑOS:

Caño Clase K7 - JGS Caño Clase K7 - JTI	Pág. 198 Pág. 199
Caño Clase K9 - JGS Caño Clase K9 - JTI, JTE e JPK	Pág. 200 Pág. 201
CAPÍTULO 8 - CODOS CON ENCHUFES - JGS:	
Codo 90° con Enchufes - JGS Codo 45° con Enchufes - JGS Codo 22° 30' con Enchufes - JGS Codo 11° 15' con Enchufes - JGS	Pág. 203 Pág. 204 Pág. 205 Pág. 206
Te con Enchufes JGS Te con Enchufes JGS y derivación con Bridas	Pág. 207 Pág. 209
Cruz con Enchufes - JGS	Pág. 210
Reducción Espiga y Enchufe - JGS Reducción con Enchufe - JGS	Pág. 211 Pág. 212
Empalme con Enchufes - JGS	Pág. 213
Cap - JGS	Pág. 214
CAPÍTULO 9 - CODOS CON ENCHUFES - JM:	
Empalme de correr - JM	Pág. 216
CAPÍTULO 10 - CODOS CON ENCHUFES - JTI, JTE Y JPK:	
Codo 90° con Enchufes - JTI JTE Codo 45° con Enchufes - JTI JTE JPK Codo 22° 30' con Enchufes - JTI JTE JPK Codo 11° 15' con Enchufes - JTI JTE JPK	Pág. 218 Pág. 219 Pág. 220 Pág. 221

Te con Enchufes - JTI JTE Te con Enchufes y Bridas- JTI JTE JPK	Pág. 222 Pág. 224
Cruz con Enchufes - JTI JTE	Pág. 226
Reducción Espiga y Enchufe - JTI Reducción con Enchufes - JTE JPK JTETI	Pág. 227 Pág. 228
Empalme con Enchufes - JTI JTE	Pág. 229
Cap - JTI JTE	Pág. 230
CAPÍTULO 11 - CAÑOS Y CODOS CON BRIDAS:	
Caños con Bridas	Pág. 232
Carretel con Bridas Manguito	Pág. 234 Pág. 235
Codo con Pie 90° con Bridas Codo 90° con Bridas Codo 45° con Bridas Codo 22° 30' con Bridas Codo 11° 15' con Bridas	Pág. 236 Pág. 237 Pág. 238 Pág. 239 Pág. 240
Te con Bridas	Pág. 241
Junción 45° con Bridas	Pág. 243
Reducción con Bridas Placa de Reducción	Pág. 244 Pág. 245
Placa Ciega	Pág. 246
Empalme con Pasamuros Carretel con Pasamuros	Pág. 247 Pág. 248
Accesorios para Bridas: Bulones Accesorios para Bridas: Arandelas	Pág. 249 Pág. 250

CAPÍTULO 12 - PIEZAS DE TRANSICIÓN:

Extremidad Brida y Espiga - JGS	Pág. 252
Extremidad Brida y Enchufe - JTI JTE JPK	Pág. 253
Extremidad Brida y Espiga	Pág. 254

CAPÍTULO 13 - PIEZAS DE INTERVENCIÓN Y MONTAJE:

Junta Gibault	Pág. 256
Coupling	Pág. 257
ULTRAQUICK	Pág. 258
ULTRALINK	Pág. 262

CAPÍTULO 1 - FABRICACIÓN:

HIERRO FUNDIDO DÚCTIL

El hierro fundido dúctil se diferencia de los hierros fundidos grises tradicionales por sus notables propiedades mecánicas (elasticidad, resistencia a los choques, capacidad de alargamiento...). Estas características se deben a la forma esferoidal de las partículas de grafito.

Vea También:

Definición

Diferentes tipos de hierro fundido

Influencia de la forma del grafito

Características del hierro fundido GS

☑ El hierro fundido dúctil Saint-Gobain Canalização

DEFINICIÓN

Se puede establecer una clasificación de los productos ferrosos en función del contenido de carbono dentro del metal básico:

hierro: 0 a 0,1% de C,
acero: 0,1 a 1,7% de C,
hierro fundido 4.7 a 5%

hierro fundido: 1,7 a 5% de C.

Por debajo de 1,7% de carbono, la solidificación genera austeníta, en cuya estructura todo el carbono se encuentra en solución sólida. Por encima de 1,7% de carbono, éste no se puede disolver en su totalidad en la estructura del hierro y, por ello, se solidifica bajo la forma de una segunda fase que puede ser grafito (C puro) o carburo férrico (Fe_3C). El hierro fundido es un material multi-fases de estructura compleja: los constituyentes principales son la ferrita ($Fe\alpha$) y la perlita ($Fe\alpha$ + Fe_3C).

Otros elementos, presentes en el hierro fundido en proporciones muy bajas, tienen una influencia sobre la estructura y las propiedades mecánicas y de fundición del metal. El silicio (generalmente del 1 al 3%) tiene un cometido particular y, de hecho, convierte el hierro fundido en aleación ternaria: hierro, carbono, silicio.

DIFERENTES TIPOS DE HIERROS FUNDIDOS

El término de **hierro fundido** cubre una amplia variedad de aleaciones Fe-C-Si que suelen clasificarse en familias según el estado del grafito, con una diferenciación adicional debida a la estructura de la matriz metálica (ferrita, perlita...).

INFLUENCIA DE LA FORMA DEL GRAFITO

En los hierros fundidos grises, el grafito se presenta en forma de laminillas, de ahí proviene su denominación metalúrgica: hierro fundido de grafito laminar. Cada laminilla de grafito puede producir un comienzo de fisura cuando se concentran esfuerzos anormales en determinados puntos.

Por ello, los metalúrgicos han tratado de disminuir o eliminar estos efectos modificando el tamaño o la disposición de estas laminillas. La centrifugación ha permitido obtener laminillas muy finas que aumentan sensiblemente las cualidades mecánicas del hierro fundido.

Se dió un paso decisivo en 1948, cuando las investigaciones realizadas en EE.UU. y Gran Bretaña permitieron obtener un hierro fundido de grafito esferoidal, (o hierro fundido GS), más conocido con el nombre de hierro dúctil.

El grafito deja de tener la forma de laminillas, sino que se encuentra cristalizado en forma esférica. Por lo tanto, las líneas de propagación de las posibles rupturas se encuentran eliminadas.

La cristalización del grafito en forma de esferas se obtiene mediante la introducción controlada de una pequeña cantidad de magnesio en un hierro fundido de base previamente desulfurado.

Hierro fundido gris

Hierro fundido dúctil

CARACTERÍSTICAS DEL HIERRO FUNDIDO CON GRAFITO ESFEROIDAL

Por la forma esferoidal del grafito que contiene, el hierro fundido dúctil tiene las siguientes y notables características mecánicas:

- resistencia a la tracción,
- resistencia a los choques,
- alto límite elástico,
- alargamiento importante.

Estas características pueden mejorarse, todavía más, mediante el control del análisis químico y del tratamiento térmico de la matriz metálica. El hierro fundido dúctil conserva, no obstante, las cualidades mecánicas tradicionales de los hierros fundidos, que provienen de su alto contenido de carbono:

- resistencia a la compresión,
- aptitud de moldeo,
- resistencia a la corrosión,
- maquinabilidad.
- resistencia a la fatiga.

EL HIERRO FUNDIDO DÚCTIL

Todos los caños, piezas especiales, válvulas y accesorios fabricados por **Saint-Gobain Canalização** son de hierro fundido dúctil, conforme las normas NBR 6916, NBR 7675 y ISO 2531. Mediante acuerdo entre fabricante y cliente, el límite convencional de elasticidad de 0,2% (R _{p 0,2}), puede ser medido.

Este no deberá ser inferior a:

- 270 MPa cuando A > 12% para los DN 80 a 1000 o > 10% para el DN > 1000,
- 300 MPa en cualquier otro caso.

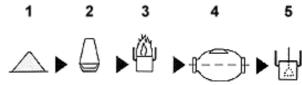
La dureza Brinell no deberá exceder de 230HB para los caños y 250HB para las piezas especiales, válvulas y accesorios. En el caso de los componentes fabricados por soldadura, es admisible una dureza Brinell más elevada en la zona afectada térmicamente por la soldadura.

Tipos de Piezas	Resistencia mínima a la tracción Rm (MPa)	Alargamiento mínir	Alargamiento mínimo a la rotura A (%)	
	DN 80 a 1200	DN 80 a 1000	DN 1200	
Caños Centrifugados	420	10	7	
Caños no centrifugados, piezas especiales y accesorios	420	5	5	

FABRICACIÓN DE LOS PRODUCTOS

El proceso de fabricación de los caños, piezas especiales, válvulas y accesorios corresponde a tres etapas:

- elaboración del metal : alto horno, y procesamiento del metal,
- centrifugación / fundición
- acabado / revestimientos

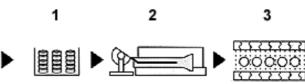

Vea También:

- Elaboración del metal
- Fabricación de los caños
- Fabricación de piezas especiales, válvulas y accesórios

ELABORACIÓN DEL METAL

El metal líquido es obtenido directamente por la reducción del mineral de hierro en un alto horno. Los materiales se seleccionan y controlan cuidadosamente, con el fin de producir un metal de base de gran pureza compatible con los procedimientos que se describen a continuación.

Después de la desulfuración, la temperatura del hierro fundido se ajusta en un horno eléctrico, con el fin de obtener la temperatura óptima de colada. En esta fase, de ser necesarias, se pueden efectuar correcciones a la composición química del metal añadiendo hierro-aleaciones. A continuación, se introduce el magnesio dentro del líquido con el fin de que el hierro fundido gris se vuelva dúctil.


Elaboración del metal

- 1. Mineral
- Alto horno
 Desulfuración
- Ajuste composición/temperatura
- 5. Tratamiento magnesio

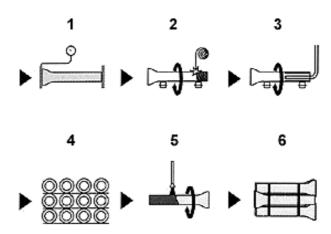
FABRICACIÓN DE LOS CAÑOS

Centrifugación

El procedimiento de centrifugación consiste en volcar el hierro fundido líquido dentro de un molde cilíndrico (coquilla) que gira a gran velocidad y en solidificar el metal por enfriamiento externo del molde.

Centrifugación

- Preparación de los machos para el moldeo de los enchufes
 Centrifugación
- Centrifugación
- 3. Tratamiento térmico


Los principales procedimientos son el *de Lavaud* (en los DN 80 a 600) y el sistema *Wet Spray* (en los DN 700 a 1200).

En el procedimiento *de Lavaud*, el metal líquido se vierte en un molde de acero forjado y sufre un enfriamiento muy rápido. Es necesario un recocido de grafitización y luego de ferritización para obtener caños con la estructura y propiedades mecánicas deseadas.

En el procedimiento *Wet Spray*, se recubre la superficie interior del molde de acero forjado (antes de verter el hierro fundido) con una fina capa de polvo de sílice refractario con lo que se disminuye la conductividad térmica de la interfase metal liquido-molde de acero forjado. La rapidez de esfriamiento de la pared del caño es inferior a la del procedimiento *de Lavaud* y sólo se requerirá un recocido de ferritización.

Acabado y Revestimientos

Cuando salen del horno de tratamiento térmico, los caños reciben externamente una capa de zinc metálico puro, obtenida por la fusión de alambre de zinc por arco eléctrico y proyección por aire comprimido. Varios tipos de inspecciones y ensayos se realizan sistemáticamente después del zincado con el fin de garantizar la calidad: control de la estructura metalográfica y de las características mecánicas del metal, inspección visual, control dimensional, prueba hidrostática unitaria. Se da especial importancia al control dimensional de la espiga y del enchufe debido a su importancia en lo que hace a la estanquiedad de la junta.

Acabado, Revestimientos y Embalaje

- 1. Barnizado
- 2. Aplicación de zinc
- 3. Aplicación del mortero de cemento
- 4. Fraguado del cemento
- 5. Pintura barnizado
- 6. Almacenamiento

El revestimiento interior de mortero de cemento se aplica por centrifugación. El mortero se vierte en el caño, puesto en rotación a gran velocidad, lo que garantiza la obtención de una capa uniforme, compacta y autoportante.

A continuación el mortero de cemento de los caños se deja fraguar a temperatura y humedad controladas. Una vez fraguado el cemento, los caños pasan por las líneas de barnizado donde se aplica sobre el zinc una capa de barniz bituminosa. Finalmente , los caños se almacenan en el patio de expedición. Hasta (DN 300) los caños se empaquetan.

FABRICACIÓN DE PIEZAS ESPECIALES, VÁLVULAS Y ACCESORIOS

Fundición

Son utilizados vários procedimientos de moldeo, según el tipo y las dimensiones de las piezas a fabricar. Los principales procesos de moldeo utilizados por Saint-Gobain Canalização son:

- moldeo en arena compactada, para piezas hasta el DN 600,
- moldeo por el proceso de cura en frio, para DN > 700.

Acabado y Revestimientos

Al salir del moldeo, las piezas pasan por las operaciones de eliminación de granallado y desbarbado. Las piezas especiales, válvulas y accesorios se someten a continuación a una prueba de estanqueidad con aire comprimido, antes de recibir el revestimiento bituminoso u otro tipo de revestimiento específico.

PRUEBA EN FÁBRICA

Todos y cada uno de los caños, piezas especiales y válvulas **Saint-Gobain Canalização** son sometidos en fábrica a una prueba de presión interna, en conformidad con los requisitos de las normas brasileñas e internacionales.

Caños con enchufe

DN	Presión de prueba hidráulica (Mpa)	
DN	K7	K9
80 a 300	3,2	5,0
350 a 600	2,5	4,0
700 a 1000	1,8	3,2
1200	1,3	2,5

Cada caño es sometido individualmente a una prueba hidráulica, con las presiones indicadas en la tabla. Normas NBR 7663 e ISO 2531.

Piezas especiales con enchufe Caños y piezas especiales con bridas

DN		Control de estanqueidad
	80 a 1200	Prueba al aire a una presión mínima de 0,1Mpa. Control externo con producto espumoso o inmersión en agua

La prueba es aplicada individualmente a cada pieza. Normas NBR 7663 e ISO 2531.

Válvulas

DN	Control de estanqueidad
50 a 2000	Ver capítulo específico

Las pruebas son aplicadas individualmente en cada pieza. Las normas son mencionadas en las descripciones de los productos.

CALIDAD Y CERTIFICACIÓN ISO

Saint-Gobain Canalização ha implantado un sistema de garantía de calidad en conformidad con la norma ISO 9001:2000, cuyo objetivo es poner a disposición de los clientes, productos adecuados a sus necesidades.

Vea También:

Ø

Garantia de la calidad

Ø

Certificación ISO

GARANTIA DE LA CALIDAD

La obtención de la calidad se consigue no sólo mediante controles sobre los productos terminados, sino también a partir de la implantación de una organización de control conforme a reglas especificas en lo que se refiere a:

- los medios de fabricación,
- los métodos de trabajo (implantación de procedimientos, definición de los circuitos de documentos),
- la responsabilidad de los que intervienen,
- la garantía del cumplimiento de los criterios de calidad en todos los niveles de fabricación.

El sistema de gestión y seguimiento de la calidad **Saint-Gobain Canalização** se aprecia no solo en la actividad de producción sino tambien en la comercialización y asistencia técnica, poniendo a disposición de los clientes productos que cumplen perfectamente las necesidades solicitadas. El sistema de calidad **Saint-Gobain Canalização** es certificado, conforme a la norma ISO 9001:2000, por una entidad externa e independiente.

En la producción, la organización del sistema de calidad tiende especialmente a :

- comprobar, desde el comienzo, la regularidad de las materias primas, constituyentes y demás componentes necesarios para la fabricación y la utilización de los productos,
- dominar el proceso de fabricación, consolidando nuestra experiencia por su formalización, su automatización y la formación de operadores y a continuación, mejorándolo constantemente gracias al análisis de las medidas efectuadas a todo lo largo del ciclo de fabricación,
- comprobar, en cada etapa de la elaboración del producto, que el mismo satisface a las exigencias especificadas, con el fin de permitir la detección precoz de eventuales defectos, así como su corrección.

Esta organización está basada en:

- el autocontrol, que en fábricación constituye la base misma del sistema y consiste en delegar en las personas involucradas el control de los resultados de su trabajo de acuerdo a reglas establecidas previamente,
- la auditoría que, en forma sistemática, comprueba el cumplimiento de las reglas vigentes y su eficacia, tanto dentro de Saint-Gobain Canalização como entre los proveedores y subcontratistas,
- el seguimiento que, partiendo de medidas efectuadas de manera regular, permite verificar la eficacia de los procedimientos y de los productos en relación con los objetivos establecidos.
- el control, directo, de las características de los productos, materias primas o piezas

CERTIFICACIÓN ISO

La certificación obtenida testifica la conformidad del sistema de garantia de la calidad **Saint-Gobain Canalização**, con los requisitos de la norma **ISO 9001:2000** para la fabricación de caños, piezas especiales, válvulas y accesorios en hierro dúctil.

CAPÍTULO 2 - PROYECTO:

NECESIDADES / RECURSOS DE AGUA

Cuando se dimensiona una red se debe tomar en consideración:

- las necesidades de aqua, estimadas mediante métodos estadísticos o analíticos,
- los recursos de agua, evaluados a partir de datos hidrogeológicos e hidrológicos propios de cada región.

Vea También:

- Evaluación de las necesidades de agua
- Evaluación de los recursos de agua

EVALUACIÓN DE LAS NECESIDADES DE AGUA

Volumen

El volumen de agua necesario para abastecer una población depende:

- de la población y de las caracteristicas de la localidad a atender,
- de las necesidades municipales, agrícolas e industriales,
- de los hábitos y costumbres de la población.

Por lo general, se prevén las siguientes cantidades por habitante y día:

- municipios rurales: de 130 a 180 litros (sin contar las necesidades agrarias),
- municipios medianos: de 200 a 250 litros (incluidas las necesidades municipales),
- ciudades: de 300 a 450 litros (incluidas las necesidades municipales), pudiendo ser mayores en las grandes ciudades.

Es necesario dimensionar las cañerias de aducción y de distribución de agua, teniendo en cuenta las perspectivas de desarrollo urbano a largo plazo.

Debe tomarse en cuenta la existencia de los establecimientos públicos y de los de carácter industrial.

A continuación se dan, como ejemplo, algunos valores medios de necesidades de agua:

- escuelas: 100 litros por alumno y por día,
- mataderos: 500 litros por cabeza de ganado y por día
- hospitales: 400 litros por cama y por día,
- lucha contra incendios: reserva mínima de 120 m³, para alimentar un hidrante de DN 100 durante 2 h.

Es indispensable disponer, de un margen de seguridad, con el fin de tener en cuenta posibles omisiones o inexactitudes que afecten a las informaciones obtenidas y al rendimiento efectivo de la red, el que viene dado por la siguiente fórmula:

r = Volumen facturado ÷ Volumen producido

Necesidad bruta del agua = (Necesidad neta ÷ r) × K seq × K col

donde:

K _{seq} = coeficiente de seguridad (caso de datos inciertos)

K col = coeficiente definido por (Vol. anual facturado futuro ÷ Vol. anual facturado actual)

Caudal

Casos de colectividades (gran número de usuarios)

Las necesidades del caudal evaluadas en demandas máximas diarias y demandas máximas horarias. Una red de distribuición suele ser dimensionada para los caudales de pico horario.

$$Q_{mh} = Kd \times Kh \times (Vd_{médio} \div 24) (m^3/h)$$

donde:

Vd _{médio} = V_{anual} (m³) ÷ 365 : consumo diario médio por año

Kd = relación entre el mayor consumo diário, verificado en el periodo de un año y el consumo médio diario en este mismo tiempo, o sea:

Kd = Vd _{máx} ÷ Vd _{médio}: coeficiente de demanda máxima diaria

Kh = relación entre caudal máximo horario y caudal médio del día de mayor consumo, o sea:

Kh = (Qh _{máx} ÷ Vd _{máx}) × 24 : coeficiente de demanda máxima horária

Qh_{máx}: caudal utilizado durante la hora de mayor consumo del dia de mayor consumo (m³/h).

Vd_{máx}: volumen utilizado el día de mayor consumo del año (m³/dia).

Casos de los edificios colectivos (pequeño número de usuarios)

Las necesidades de caudal se evalúan no ya en función del número de consumidores sino en base al número de aparato (lavabos, piletas, inodoros, etc...) ponderado por un coeficiente de simultaneidad de funcionamiento:

Q = k.n.q

donde:

q: caudal unitario de un aparato

n: número de aparatos (n > 1)

$$k = \frac{1}{\sqrt{(n-1)}}$$
 coeficiente probable de simultaneidad (no significativo para altos valores de n)

Ejemplo no 1

Hipótesis

- Colectividad semi-rural: población actual: 1 500 habitantes, crecimiento demográfico: 1 000 habitantes (horizonte a 25 años)
- Volumen anual facturado: 75 000 m³
- Rendimiento estimado de la red: r = 75%
- Coeficientes de día y hora de mayor consumo estimados : Kd = 2,5 ; Kh = 1,8

Cálculos y resultados

Volumen anual futuro: Va futuro = $75\ 000 + (0.2 \times 2\ 500 \times 365) = 257.500\ m^3$ (consumo diario estimado por habitante: 200 l)

K
$$_{col}$$
 = Va $_{futuro}$ ÷ Va $_{atual}$ = 257 500 ÷ 75 000 = 3,43

Seguridad para datos incertos: 20% (K seg = 1,2)

Necesidad bruta anual: N = $(V_a \div r) \times k_{col} \times K_{seq} = 796 894 \text{ m}^3$

Caudal medio diario futuro : Q $_{mdf}$ = 796 894 ÷ 365 = 2183 m³

Caudal pico horario futuro : Q $_{mhf}$ = $K_d \times K_h \times (Q_{mdf} \div 24) = 409 \text{ m}^3/\text{h}$

En este ejemplo, la cañeria de aduccion, deberá ser dimensionada para garantizar un caudal de 409 m³/h al horizonte de 25 años.

Ejemplo no2

Hipótesis

Edificio colectivo : 10 departamentos, 7 aparatos por departamento, caudal unitario promedio de un aparato: 0,1 l/s

Cálculos y resultados

La demanda de abastecimiento de este inmueble será: Q = k.n.q

Q = k.n.q

donde:

$$k = \frac{1}{\sqrt{(7 \times 10) - 1}} = 0.12$$

$$Q = 0.1 \times 70 \times 0.12 = 0.84 \text{ l/s}$$

EVALUACIÓN DE LOS RECURSOS DE AGUA

El agua puede ser captada en profundidad (capas subterráneas, manantiales) o en superficie (ríos, represas, lagos etc). En todos estos casos, hace falta estudiar de manera precisa la hidrología, en especial los regímenes hidrográficos e hidrogeológicos en los posibles puntos de captación, cuyo rendimiento puede variar en el transcurso del año.

Una serie de mediciones en los recursos de agua, efectuadas durante un período largo de tiempo, permiten determinar estadísticamente la evolución de los caudales, es decir de los volúmenes disponibles, especialmente en época de estiaje.

En el caso de un río con caudal insuficiente (estiaje), es necesario crear una reserva mediante la construcción de un embalse o represa.

Cuando no se dispone de resultados de medidas in situ, se puede estimar el caudal de un río mediante la ayuda de diferentes métodos adaptados a la topografía e hidrología de la cuenca de alimentación.

DIÁMETRO (DETERMINACIÓN)

La determinación del diámetro de una cañeria con presión se efectúa teniendo en cuenta:

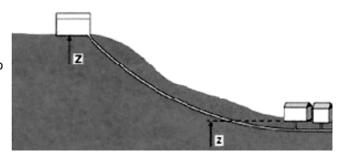
- los parámetros hidráulicos (caudal, pérdidas de carga, velocidad), para una conducción por gravedad,
- los parámetros hidráulicos y económicos óptimos (costo del bombeo y amortización de las instalaciones) para una conducción de bombeo.

En función de las condiciones de servicio, se deben medir los riesgos eventuales de golpes de ariete, cavitación y abrasión, e instalar las protecciones adecuadas.

Vea También:

M Conducción por gravedad

⊘ Conducción por bombeo


Aplicación

Precauciones

CONDUCCIÓN POR GRAVEDAD

Definición

La conducción por gravedad consiste en: a partir de un almacenamiento de agua natural o artificial situado a la cota Z, alimentar con una cañeria a presión, todos los puntos situados a cotas z < Z, sin necesidad de bombeo.

■ Principios de dimensionamiento

Características de la red:

Q: caudal en función de las necesidades (m³/s)

- caudal pico en la red de distribución o caudal de incendio,
- caudal medio.

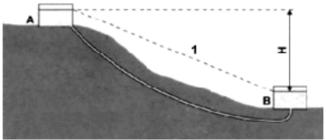
j: pérdida de carga unitaria (en m/m).

V: velocidad del agua en la cañeria (en m/s).

D: diámetro interno de la cañeria (en m).

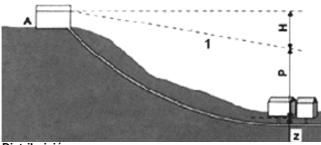
L: Longitud de la cañeria (en m).

Características topográficas:


Para el cálculo, se considera el caso más desfavorable.

- Conducción de un tanque A hacia un tanque B: H = cota del nivel mínimo en A cota del nivel máximo de B.
- Distribución

H : altura correspondiente a la diferencia entre el nivel mínimo en el tanque A v la cota (z +P)


P: presión mínima de distribución en el punto más alto.

z : cota del terreno.

Conducción de un tanque A hacia un tanque B.

- H: Carga disponible
- 1. Linea piezométrica

Distribuición

1. Linea piezométrica

Fórmulas

Sabiendo que:
$$Q = \frac{\pi D^2}{4} \times V$$

la fórmula de Darcy se escribe:
$$j = \frac{\lambda V^2}{2 g D} = \frac{8 \lambda Q^2}{\pi^2 g D^5}$$

 λ , función de (**k**, ν , **D**), se deduce la fórmula de Colebrook, en la cual k = 0,1mm (rugosidad). Para mayores detalles vea **Pérdidas de Carga**.

Determinación del diámetro (D)

La pérdida de carga unitaria máxima es: j = H ÷ L

El DN puede ser determinado:

- por el cálculo, resolviendo el sistema de ecuaciones a partir de las fórmulas de Darcy y Colebrook (cálculo por interación que requieren en medios informáticos),
- por lectura directa de las tablas de pérdidas de carga.

Ejemplo

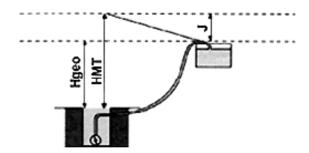
Caudal: Q = 30 l/s Longitud: L = 4 000 m Carga disponible: H = 80 m

$$j = H \div L = 80 \div 4\ 000 = 0,02\ m/m = 20\ m/km$$

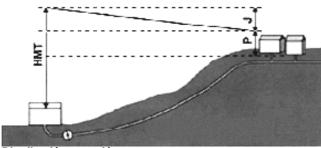
La tabla indica que debe escogerse el DN 150 con:

velocidad: V = 1,7 m/s

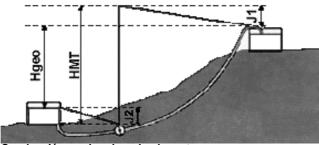
pérdida de carga: j = 18,96 m/km. Vea **Pérdidas de Carga (Tablas).**


CONDUCCIÓN POR BOMBEO

Definición

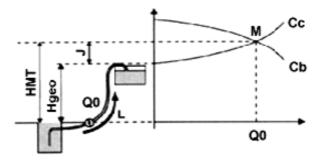

Muchas veces, la captación o el almacenamiento no tienen la suficiente altura como para lograr las condiciones de presión de distribuición requeridas, en cuyo caso es preciso aportar al fluido la energía necesaria.

Se llaman:


- altura geométrica (Hgeo) la diferencia de altura entre el nivel de bombeo y el nivel de descarga.
- altura manométrica total (HMT) la altura geométrica incrementada de las pérdidas de carga totales correspondientes a la aspiración y al bombeo, o a la presión residual mínima de distribución (ver los ejemplos de las figuras).

Conducción por bombeo desde un pozo HMT = Hgeo + J

Distribución a presión P= Presión mínima de trabajo


Conducción por bombeo desde un tanque HMT = Hgeo + J $_1$ + J $_2$

Principios de dimensionamiento

Resolución gráfica

$$HMT = H_{geo} + J$$
$$J = f (Q^2)$$

C_c: curva característica del sistema C_b: curva característica de la bomba M: punto de funcionamiento

Nota: resolución válida para niveles de

aspiración y bombeo constantes; en caso contrario, hay que estudiar los puntos de funcionamiento limitados por las curvas caracteristicas, los niveles maximos y mínimos en el pozo de aspiración.

Dimensionamiento hidráulico

Al igual que en el caso anterior:

$$J = j L$$

$$j = (\lambda V^2) \div (2 g D)$$

 λ es función de V, k, D.

En cañerias de bombeo, hay que tener en cuenta las curvas características de la instalación y de las bombas, y comprobar que, según el DN escogido, el punto de funcionamiento M corresponde al caudal solicitado Q_0 .

Diámetro económico

El diámetro económico se calcula teniendo en cuenta:

- la amortización de las instalaciones (estación de bombeo + cañeria)
- los caudales de bombeo, obteniéndose la potencia mediante la siguiente fórmula:

donde:

P: potencia a suministrar al eje de la bomba (kW)

Q: caudal (l/s)

HMT: altura manométrica total (m) **r:** rendimiento bomba-motor.

APLICACIÓN

Se suelen utilizar dos métodos, según la importancia del proyecto:

Pequeños proyectos

Se aplica la fórmula de Vibert, válida para los DN pequeños y medianos, y tramos cortos;

$$D = 1,456 (ne \div f)^{0,154} \times Q^{0,46}$$

donde:

D: diámetro económico

f: precio de la cañeria instalada en \$/kg

Q: caudal en m3/s

n = (tiempo de bombeo en h) ÷ 24

e: precio del kWh en \$.

El coeficiente 1,456 tiene en cuenta un indíce de amortización del 8% durante 50 años. El DN escogido debe ser igual o inmediatamente superior al diámetro D. Obs: utilizar la unidad monetaria (\$) que corresponda.

Grandes proyectos

Para diámetros y tramos grandes, es preciso efectuar un estudio económico detallado. El diámetro adoptado será el corespondiente a un costo anual mínimo (amortización de la inversión + gastos de bombeo).

PRECAUCIONES

Tener en consideración que:

La velocidad varía de manera importante con relación al diámetro. Además de las pérdidas de carga, conviene verificar,la compatibilidad con los fenómenos eventuales de:

- golpes de ariete,
- cavitación,
- abrasión.

PRESIÓN (TERMINOLOGÍA)

Bajo el término de presión, conviene diferenciar la terminología:

- del proyecto de cañeria (relacionada a las capacidades hidráulicas),
- del fabricante (vinculada con el funcionamiento del producto).

Vea También:

- Terminología
- Dimensionamiento de una cañeria
- M Terminología del diseñador
- Terminología del fabricante
- **Otras definiciones del fabricante**
- Presión de la prueba de estanqueidad

TERMINOLOGÍA

Las terminologías utilizadas para los caños y piezas especiales en hierro dúctil, son las siguientes:

	Terminología	
	Abreviatura	Descripción
	DP	Presión de diseño
Diseñador	MDP	Presión máxima de diseño
	STP	Presión de prueba de la red
PMA Fabricante PFA	Presión máxima admisible	
	PFA	Presión de funcionamiento admisible
	PEA	Presión de prueba en obra admisible

DIMENSIONAMIENTO DE UNA CAÑERIA

 $DP \le PFA$ $MDP \le PMA$ $STP \le PEA$

Cuando se determina qué componente usar en una red, es necesario comprobar que las tres condiciones indicadas antes sean respetadas.

TERMINOLOGÍA DEL DISEÑADOR

DP - Presión de diseño

Presión máxima de funcionamiento de la zona de presión, fijada po el diseñador, pero sin incluir el golpe de ariete.

MDP - Presión máxima de diseño

Presión máxima de funcionamiento de la zona de presión, fijada por el diseñador, pero incluyendo el golpe de ariete y teniendo en cuenta futuros desarrollos.

- MDP de escribe MDPa cuando se fija previamente la parte del golpe de ariete,
- MDP de escribe MDPc cuando se ha calculado el golpe de ariete.

STP - Presión de prueba de la red

Presión hidrostática aplicada a una tubería recientemente colocada para asegurarse de su integridad y

estanquidad.

TERMINOLOGIA DEL FABRICANTE

PFA - Presión de funcionamiento admisible

Presión interna, sin incluir el golpe de ariete, que puede ser soportada con seguridad por un componente con total seguridad y forma continua en régimen hidráulico permanente.

- PMA - Presión máxima admisible

Presión interna maxima, incluido el golpe de ariete, que puede ser soportada con seguridad por un componente en servicio.

■ PEA - Presión de prueba en obra admisible

Presión hidrostática máxima que puede aplicarse in situ al componente de una canalización recientemente instalada.

OTRAS DEFINICIONES DEL FABRICANTE

PN - Presión Nominal

Designación numérica expresada por un número utilizado como referencia. Todos los componentes con bridas de un mismo diámetro nominal (DN) y designados por un mismo número de PN deben tener las dimensiones compatibles para realizar la junta.

Las siguientes tablas, presentan la correspondencia entre las presiones de servicio y de prueba y la designación PN de los caños y piezas especiales con bridas.

		PN 10	PN 16				PN 25		
DN	PMA	PFA	PEA	PMA	PFA	PEA	PMA	PFA	PEA
	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa
80	1,6	2,0	2,5	1,6	2,0	2,5	4,0	4,8	5,3
100 y 150	1,6	2,0	2,5	1,6	2,0	2,5	2,5	3,0	3,5
200 a 300	1,0	1,2	1,7	1,6	2,0	2,5	2,5	3,0	3,5
350 a 1200	1,0	1,2	1,7	1,6	2,0	2,5	2,5	3,0	3,5
1400 a 2000	1,0	1,2	1,7	1,6	2,0	2,5	-	-	-

PRESIÓN DE LA PRUEBA DE ESTANQUEIDAD

Presión aplicada a un componente durante la fabricación, para garantizar la estanqueidad. Ver **Prueba en Fábrica.**

PRESIONES MÁXIMAS ADMISIBLES

DIMENSIONAMIENTO DE UNA CAÑERIA

PMT < PMA

PMC < PMS

PPO < PMP

Cuando se determina qué componente usar en una red, es necesario comprobar que las tres condiciones antes indicadas sean respetadas.

Donde:

- DP = Presión de diseño
- MDP = Presión máxima de diseño
- STP = Presión de prueba de la red.

COEFICIENTES DE SEGURIDAD

Las presiones indicadas en las tablas anteriores, han sido fijadas con coeficientes de seguridad altos, teniendo en consideración no solamente los esfuerzos debidos a la presión interna, sino también a otras solicitaciones a veces accidentales, a que son sometidas las cañerias en el momento de su instalación y en servicio.

Ejemplo:

Para un caño, la PMA es calculada con un coeficiente de seguridad de:

- 3 en relación a la resistencia mínima a la ruptura.
- 2 en relación al límite elástico mínimo.

Consultar a **Saint-Gobain Canalização** sobre la utilización de níveles de presión superiores a los indicados en las tablas.

UTILIZACIÓN DE LOS ÍNDICES DE PRESIONES

La resistencia a la presión de un componente de una red depende:

- de la resistencia del cuerpo del componente,
- de la calidad de la(s) junta(s) que lo equipan(n).

Las tablas de presión listadas a continuación indican, para cada tipo de componente (caños, piezas especiales, ...) y cada tipo de junta, las PMA, PFA y PEA que es conveniente que se tenga en consideración.

- Presiones máximas admisibles Caño Clase K7
- Pressões máximas admisibles Caño Clase K9
- Presiones máximas admisibles Piezas con enchufes
- Presiones máximas admisibles Piezas con bridas

Ejemplo:

Te DN 300 con enchufes (JGS) y brida DN 150 PN 25:

- PMA = 2,5 MPa
- PFA = 3,0 MPa
- PEA = 3,5 MPa

PRESIONES MÁXIMAS ADMISIBLES - CAÑOS K7

			Caños -	Clase K7				
DN		JGS		JTI				
DN	PMA	PFA	PEA	PMA	PFA	PEA		
	MPa	MPa	MPa	MPa	MPa	MPa		
150	5,0	6,0	6,5	1,6	1,9	2,4		
200	5,0	6,0	6,5	1,0	1,2	1,7		
250	4,1	4,9	5,4	1,0	1,2	1,7		
300	3,6	4,3	4,8	1,0	1,2	1,7		
350	3,2	3,8	4,3	-	-	-		
400	3,0	3,6	4,1	-	-	-		
450	2,9	3,5	4,0	-	-	-		
500	2,8	3,4	3,9	-	-	-		
600	2,6	3,1	3,6	-	-	-		
700	2,4	2,9	3,4	-	-	-		
800	2,3	2,8	3,3	-	-	-		
900	2,3	2,8	3,3	-	-	-		
1000	2,2	2,6	3,1	-	-	-		
1200	2,1	2,5	3,0	-	-	-		

PMA - Presión máxima admisible

Presión interna maxima, incluido el golpe de ariete, que puede ser soportada con seguridad por un componente en servicio.

■ PFA - Presión de funcionamiento admisible

Presión interna, sin incluir el golpe de ariete, que puede ser soportada con seguridad por un componente con total seguridad y forma continua en régimen hidráulico permanente.

■ PEA - Presión de prueba en obra admisible

Presión hidrostática máxima que puede aplicarse in situ al componente de una canalización recientemente instalada.

 $1 \text{ MPa} = 10,19 \text{ kgf/cm}^2 = 101,9 \text{ m.c.a}$

PRESIONES MÁXIMAS ADMISIBLES - CAÑOS K9

						Caños -	Clase K	9				
DN	JGS		JTI			JTE			JPK			
DIN	PMA	PFA	PEA	PMA	PFA	PEA	PMA	PFA	PEA	PMA	PFA	PEA
	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa
80	6,4	7,7	9,6	2,5	3,0	3,5	-	-	-	-	-	-
100	6,4	7,7	9,6	2,5	3,0	3,5	-	-	-	-	-	-
150	6,4	7,7	9,6	2,5	3,0	3,5	-	-	-	-	-	-
200	6,2	7,4	7,9	1,6	1,9	2,4	-	-	-	-	-	-
250	5,4	6,5	7,0	1,6	1,9	2,4	-	-	-	-	-	-
300	4,9	5,9	6,4	1,6	1,9	2,4	3,7	4,4	4,9	-	-	-
350	4,5	5,4	5,9	-	-	-	3,0	3,6	4,1	-	-	-
400	4,2	5,1	5,6	-	-	-	3,0	3,6	4,1	-	-	-
450	4,0	4,8	5,3	-	-	-	3,0	3,6	4,1	-	-	-
500	3,8	4,6	5,1	-	-	-	3,0	3,6	4,1	-	-	- 1
600	3,6	4,3	4,8	-	-	-	2,7	3,2	3,7	-	-	-
700	3,4	4,1	4,6	-	-	-	2,5	3,0	3,5	-	-	-
800	3,2	3,8	4,3	-	-	-	1,6	1,9	2,4	-	-	-
900	3,1	3,7	4,2	-	-	-	1,6	1,9	2,4	-	-	-
1000	3,0	3,6	4,1	-	-	-	1,6	1,9	2,4	-	-	-
1200	2,8	3,4	3,9	-	-	-	1,4	1,7	2,2	-	-	-
1400	2,8	3,3	3,8	-	-	-	-	-	-	2,5	3,0	3,5
1500	2,7	3,2	3,7	-	-	-	-	-	-	2,5	3,0	3,5
1600	2,7	3,2	3,7	-	-	-	-	-	-	2,5	3,0	3,5
1800	2,6	3,1	3,6	-	-	-	-	-	-	1,6	1,9	2,4
2000	2,6	3,1	3,6	-	-	-	-	-	-		Consultar	

- PMA - Presión máxima admisible

Presión interna maxima, incluido el golpe de ariete, que puede ser soportada con seguridad por un componente en servicio.

■ PFA - Presión de funcionamiento admisible

Presión interna, sin incluir el golpe de ariete, que puede ser soportada con seguridad por un componente con total seguridad y forma continua en régimen hidráulico permanente.

■ PEA - Presión de prueba en obra admisible

Presión hidrostática máxima que puede aplicarse in situ al componente de una canalización recientemente instalada.

1 MPa = $10,19 \text{ kgf/cm}^2 = 101,9 \text{ m.c.a}$

PRESIONES MÁXIMAS ADMISIBLES - PIEZAS ESPECIALES CON ENCHUFE

Si una pieza especial consta de dos tipos de juntas (ejemplo: te con enchufes y bridas) es conveniente adoptar las PMA, PMF y PMP menos elevadas.

							Piezas	s Espe	ciales	•					
DN		JGS			JM			JTI			JTE			JPK	
DIV	PMA	PFA	PEA	PMA	PFA	PEA	PMA	PFA	PEA	PMA	PFA	PEA	PMA	PFA	PEA
	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa
80	6,4	7,7	9,6	-	-	-	2,5	3,0	3,5	-	-	-	-	-	-
100	6,4	7,7	9,6	4,0	4,8	5,3	2,5	3,0	3,5	-	-	-	-	-	-
150	5,7	6,8	7,3	4,0	4,8	5,3	2,5	3,0	3,5	-	-	-	-	-	-
200	5,0	6,0	6,5	3,5	4,2	4,7	1,6	1,9	2,4	-	-	-	-	-	-
250	4,6	5,5	6,0	3,5	4,2	4,7	1,6	1,9	2,4	-	-	-	-	-	-
300	4,3	5,2	5,7	3,2	3,8	4,3	1,6	1,9	2,4	4,1	4,9	5,4	-	-	-
350	4,1	4,9	5,4	3,1	3,7	4,2	-	-	-	3,0	3,6	4,1	-	-	-
400	4,0	4,8	5,3	3,1	3,7	4,2	-	-	-	3,0	3,6	4,1	-	-	-
450	4,0	4,8	5,3	3,0	3,6	4,1	-	-	-	3,0	3,6	4,1	-	-	-
500	3,8	4,6	5,1	3,0	3,6	4,1	-	-	-	3,0	3,6	4,1	-	-	-
600	3,6	4,3	4,8	2,9	3,5	4,0	-	-	-	2,7	3,2	3,7	-	-	-
700	3,4	4,1	4,6	2,8	3,4	3,9	-	-	-	2,5	3,0	3,5	-	-	-
800	3,2	3,8	4,3	2,7	3,2	3,7	-	-	-	1,6	1,9	2,4	-	-	-
900	3,1	3,7	4,2	2,7	3,2	3,7	-	-	-	1,6	1,9	2,4	-	-	-
1000	3,0	3,6	4,1	2,7	3,2	3,7	-	-	-	1,6	1,9	2,4	-	-	-
1200	2,8	3,4	3,9	2,6	3,1	3,6	-	-	-	1,4	1,7	2,2	-	-	-
1400	2,5/2,2*	3,0/2,6*	3,5/3,1*	-	-	-	-	-	-	-	-	-	2,5/2,2*	3,0/2,6*	3,5/3,1*
1500	2,5/2,2*	3,0/2,6*	3,5/3,1*	-	-	-	-	-	-	-	-	-	2,5/2,2*	3,0/2,6*	3,5/3,1*
1600	2,5/2,1*	3,0/2,5*	3,5/3,0*	-	-	-	-	-	-	-	-	-	2,5/2,1*	3,0/2,5*	3,5/3,0*
1800	2,5/1,6*	3,0/1,9*	3,5/2,4*	-	-	-	-	-	-	-	-	-	1,6	1,9	2,4
2000	2,5/1,6*	3,0/1,9*	3,5/2,4*	-	-	-	-	-	-	-	-	-		Consulta	r

^{*} Valores para te con 2 enchufes y bridas orientables para derivaciones con DN>600.

En el caso de piezas especiales con bridas, consultar tablas de piezas con bridas.

PMA - Presión máxima admisible

Presión interna maxima, incluido el golpe de ariete, que puede ser soportada con seguridad por un componente en servicio.

■ PFA - Presión de funcionamiento admisible

Presión interna, sin incluir el golpe de ariete, que puede ser soportada con seguridad por un componente con total seguridad y forma continua en régimen hidráulico permanente.

■ PEA - Presión de prueba en obra admisible

Presión hidrostática máxima que puede aplicarse in situ al componente de una canalización recientemente instalada.

1 MPa = 10,19 kgf/cm² = 101,9 m.c.a

PRESIONES MÁXIMAS ADMISIBLES - PIEZAS CON BRIDAS

		PN 10			PN 16			PN 25		
DN	PMA	PFA	PEA	PMA	PFA	PEA	PMA	PFA	PEA	
	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	
80	1,6	2,0	2,5	1,6	2,0	2,5	4,0	4,8	5,3	
100 y150	1,6	2,0	2,5	1,6	2,0	2,5	2,5	3,0	3,5	
200 a 300	1,0	1,2	1,7	1,6	2,0	2,5	2,5	3,0	3,5	
350 a 1200	1,0	1,2	1,7	1,6	2,0	2,5	2,5	3,0	3,5	
1400 a 2000	1,0	1,2	1,7	1,6	2,0	2,5	-	-	-	

Los caños con junta acerrojada externa, en los DN > 700, pueden ser utilizados para presiones superiores, usandos bulones especiales. Consultar a **Saint-Gobain Canalização.**

- PMA - Presión máxima admisible

Presión interna maxima, incluido el golpe de ariete, que puede ser soportada con seguridad por un componente en servicio.

■ PFA - Presión de funcionamiento admisible

Presión interna, sin incluir el golpe de ariete, que puede ser soportada con seguridad por un componente con total seguridad y forma continua en régimen hidráulico permanente.

■ PEA - Presión de prueba en obra admisible

Presión hidrostática máxima que puede aplicarse in situ al componente de una canalización recientemente instalada.

1 MPa = $10,19 \text{ kgf/cm}^2 = 101,9 \text{ m.c.a}$

DIMENSIONES

Las principales dimensiones y tolerancias de los caños y piezas especiales de hierro fundido dúctil estan normalizadas, según las normas NBR 7663, NBR 8682, NBR 13747, ISO 2531 e ISO 4179: **Vea También:**

Espesor nominal del hierro fundido

Espesor del revestimiento de cemento de los caños

► Longitud util de los caños

Diámetro exterior de los caños

Diámetro interno de los caños

ESPESOR NOMINAL DEL HIERRO FUNDIDO

Normas NBR 7663 e ISO 2531.

El espesor nominal del hierro fundido de los caños y piezas especiales, se calcula en función del DN, mediante la siguiente fórmula:

e hierro = K (0.5 + 0.001 DN)

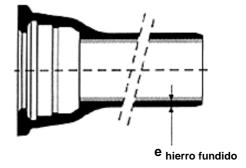
donde:

e hierro: espesor nominal de la pared en mm

DN: diámetro nominal

K: coeficiente utilizado para designar la clase de espesor, tomado en série de números enteros ...7, 8, 9, 10, 11, 12...

Nota: Las excepciones para la fórmula general son;

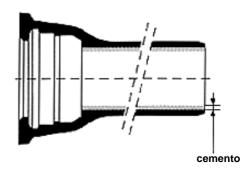

- 1a) para caños DN 80 clase K7: e = 4,3 + 0,008 DN
- 2a) para caños DN 100 hasta DN 300 clase K7: e = 4,75 + 0,003 DN
- 3a) para caños DN 80 hasta DN 200 clase K9: e = 5,8 + 0,003 DN con valor mínimo de 6 mm.

Caños

Para un DN dado, éste coincide con el diámetro exterior de un caño, cualquiera que sea su clase de espesor.

Piezas especiales

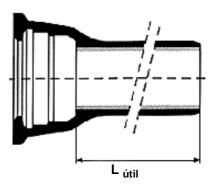
Las piezas especiales son fabricadas en la clase K12, con excepción de las tes y cruzetas que son fabricadas en la clase K14.



■ Tolerancia sobre el espesor del hierro fundido

Tipo de pieza	Espesor	Tolerancia
Tipo de pieza	mm	mm
Caños centrifugados	≥ 6	- (1,3 + 0,001 DN)
Piezas especiales	≥ 7	- (2,3 + 0,001 DN)

ESPESOR DEL REVESTIMIENTO DE CEMENTO DE LOS CAÑOS Normas NBR 8682 e ISO 4179.


	Espesor del cemento						
DN	Valor nominal	Valor médio	Valor mínimo en un punto				
	mm	mm	mm				
80 a 300	3,0	2,5	1,5				
350 a 600	5,0	4,5	2,5				
700 a 1200	6,0	5,5	3,0				

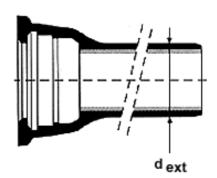
LONGITUD UTIL DE LOS CAÑOS

Normas NBR 7663 e ISO 2531.

Para el cálculo de la longitud total de la cañeria, la longitud útil de un caño tiene en cuenta, la longitud del caño sin el enchufe.

Los caños con enchufes tienen las siguientes longitudes útiles

DN	Longitud
DIN .	m
80 a 600	6
700 a 1200	7


La tolerancia sobre esas longitudes es de: ± 30 mm.

El porcentaje de los caños con espiga y enchufe que se entreguen con longitud inferior a las indicadas, no debe superar 10% del total del pedido.

DIÁMETRO EXTERIOR DE LOS CAÑOS

Norma NBR 13747 e ISO 2531

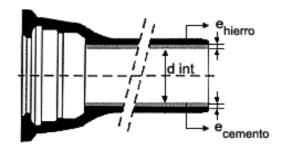
El diámetro exterior de la espiga de los caños se indica mediante los índices correspondientes. Vea Caños, Piezas Especiales y Accesórios.

- Tolerancia de la ovalización

La ovalización de la punta de los caños y piezas especiales debe:

estar dentro de los límites de:

DE
$$\begin{bmatrix} +0.5 \\ -(1.5 + 0.004 \text{ DN}) \end{bmatrix}$$
 para el DN 80 a 200


no sobrepasar 1% para los DN 250 a 600 o 2% para los DN > 600.

Cuando la ovalización sobrepasa estos valores, aplicar los procesos de desovalización. Ver **Desovalización** en **manual técnico - instalación**.

Recomendación: En todos los casos de corte de un caño, se recomienda verificar antes el diámetro exterior en el lugar donde va a efectuarse el corte. Vea **Corte de los Canõs** en **manual técnico - instalación.**

DIÁMETRO INTERNO DE LOS CAÑOS

Saint-Gobain Canalização recomienda que en el dimensionamiento hidráulico de las cañerias, se utilice el diámetro interno (DI) de los caños:

COEFICIENTES DE SEGURIDAD

Las exigencias mecánicas (presión interna, cargas exteriores) a las que una cañeria queda sometida en el momento de su puesta en servicio se pueden valorar con precisión. En cambio, resulta más difícil prever con certeza cuáles serán las tensiones que van aparecer con el tiempo. **Saint-Gobain**Canalização adopta coeficientes de seguridad altos, con el fin de garantizar una máxima durabilidad de las cañerias de hierro fundido dúctil.

Vea También:

▼ Coeficientes de seguridad mínima especificados

Coeficientes de seguridad experimentales

Evaluaciones experimentales

COEFICIENTES DE SEGURIDAD MÍNIMA ESPECIFICADOS

Los caños están dimensionados según los siguientes criterios de la norma ISO 10803.

Presión interna

La tensión de trabajo en la pared del caño no debe exceder un tercio del límite de la tensión de ruptura (correspondido a la mitad del límite elástico de tracción).

Cargas exteriores

La deformación no debe causar:

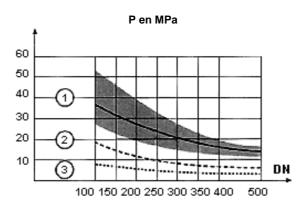
- una tensión superior a la mitad del límite de ruptura a la flexión,
- una ovalización vertical superior al 4%.

La ovalización máxima de 4% es recomendada por la norma ISO 10803 para garantizar el buen comportamiento del mortero de cemento (principalmente para los DN > 800).

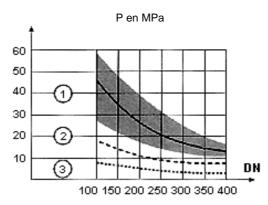
COEFICIENTES DE SEGURIDAD EXPERIMENTALES

Los caños **Saint-Gobain Canalizaçã**o cuentan, además de sus características nominales (Presión de Servicio Admisible, Alturas de Tapada), con una gran reserva de seguridad.

Efectivamente:


- la ductibilidad confiere a los materiales de hierro fundido dúctil una gran capacidad de absorción de trabajo o de energía, además de los límites de su regimen elástico,
- los métodos utilizados para el cálculo del espesor de los caños y piezas especiales preven coeficientes de seguridad elevados.

Esto es ilustrado por los gráficos siguientes en donde se puede observar que las presiones de ruptura reales son mayores que las Presiones Máximas Admisibles.


EVALUACIONES EXPERIMENTALES

- 1. Presión de rotura real
- 2. Presión de rotura calculada
- 3. Presión de servicio admisible

Caños

Piezas Especiales

PERFIL DE LA CAÑERIA

El aire es perjudicial para el adecuado funcionamiento de una cañeria a presión. Su presencia puede producir.

- una reducción del caudal de agua,
- un gasto inútil de energía,
- riesgos de golpes de ariete.

Una serie de precauciones simples a tomar en el momento de definir el perfil de la cañería permite minimizar sus efectos.

Vea También:

Origen del aire en las cañerías

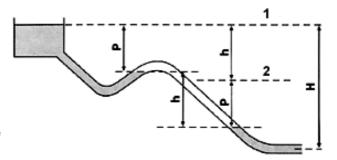
Efecto del aire en las cañerías

Recomendaciones prácticas

ORIGEN DEL AIRE EN LAS CAÑERÍAS

La introducción del aire en una cañeria puede originarse principalmente

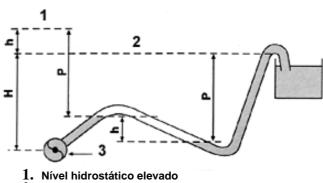
- en el momento del llenado para un ensayo hidraulico (o un vaciado), debido un número insuficiente de aparatos de eliminación del aire (válvulas de aire),
- en las proximidades de las válvulas de pie con filtro cuando las tuberias de aspiración o los prensaestopas de las bombas no son herméticos,
- por disolución en el agua bajo presión (el aire se acumula en los puntos altos del perfil).


EFECTO DEL AIRE EN LAS CAÑERIAS

El aire es perjudicial para el buen funcionamiento de una cañeria. Las burbujas de aire se concentran en los puntos altos y debido a una presión aguas arriba, se deforman y producen un desnivel.

Caso de una tubería por gravedad

Estaticamente, la bolsa de aire transmite a su extremo agua abajo la presión P que tiene agua arriba; lo que baja el nível hidrostático. La carga H disponible, se reduce en una cantidad h que corresponde a la diferencia de nivel entre los extremos de la bolsa de aire, equivalente a la columna de agua que falta.


En el extremo de la cañeria la carga disponible será H-h con la consiguiente reducción de caudal. Esta disminución puede ser mayor si existen otros puntos altos que originen bolsones de aire.

- 1. Nível hidrostático normal
- 2. Nível hidrostático rebajado

Cañeria por bombeo

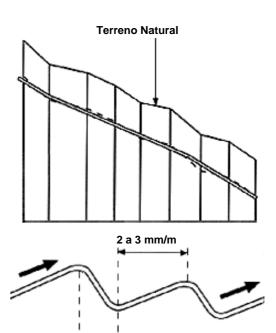
Del mismo modo que en el caso de tubería a gravedad, la presencia de una bolsa de aire también es perjudicial para el adecuado rendimiento de una instalación de bombeo. Podemos observar que será necesario un aumento de presión h (altura de la columna de agua adicional a elevar) que la bomba deberá proporcionar además de la presión H, para compensar el aumento de carga debido a la bolsa de aire, incrementando con este valor el nível hidrostático. Para un mismo caudal, el gasto de energía se encuentra aumentado en las mismas proporciones.

- 2. Nível hidrostático normal
- 3. Bomba

Por otro lado, cuando la eliminacion del aire de una tubería es insuficiente, estos inconvenientes se repiten en cada punto alto. Sus efectos se van sumando y el rendimiento de la tubería disminuye. Esta disminución algunas veces es atribuída equivocadamente a otras causas, como puede ser la disminución del rendimiento de las bombas o la incrustación de los caños. Basta eliminar el aire de la cañeria de manera correcta para que, vuelva a su capacidad de flujo normal.

Finalmente, grandes bolsas de aire pueden ser arrastradas por la corriente fuera de los puntos altos. Su desplazamiento, resultará en un igual desplazamiento del volumen de agua, provocando entonces violentos golpes de ariete.

Como conclusión, si el aire acumulado en los puntos altos no fuera eliminado de manera correcta:


- el caudal de agua se reduce,
- se pierde energía (cañeria por bombeo),
- pueden producirse golpes de ariete.

RECOMENDACIONES PRÁCTICAS

El trazado de la cañeria debe hacerse de tal manera que facilite la acumulación de aire en puntos altos perfectamente determinados, donde se instalarán los aparatos que permitan su evacuación.

Es conveniente tomar las siguientes precauciones:

- dar a la cañeria una pendiente adecuada para facilitar la subida de aire (la cañería ideal tiene una pendiente constante de como mínimo, 2 a 3 mm por metro)
- evitar los excesivos cambios de pendiente debido al relieve del terreno, sobre todo en lo que respecta a los grandes diámetros,
- cuando el perfil es horizontal, crear puntos altos y puntos bajos artificiales, con el fin de obtener una pendiente de:
 - 2 a 3 mm/m en los tramos de subida,
 - 4 a 6 mm/m en los tramos de bajada.

4 a 6 mm/m

Es aconsejable un perfil con subidas lentas y bajadas rápidas, para facilitar la acumulación del aire en los puntos altos al mismo tiempo que se opone al eventual arrastre de las bolsas de aire. Se desaconseja el perfil inverso.

Instalar:

- una valvula de eliminación de aire en cada punto alto (válvula de aire),
- una camara de desague en cada punto bajo (válvula esclusa).

GOLPE DE ARIETE

En el momento de diseñar una red, se debe proceder al estudio y cuantificación de los riesgos eventuales de golpes de ariete, con el fin de instalar las protecciones necesarias, especialmente en el caso de conducciones por bombeo. Cuando los dispositivos protectores no han sido previstos, las cañerias de hierro fundido dúctil presentan una reserva de seguridad suficiente para soportar las sobrepresiones accidentales. Vea Coeficientes de Seguridad.

Vea También:

Origen

Onsecuencias

Evaluación simplificada

Evaluación completa

Prevención

ORIGEN

Cuando se modifica bruscamente la velocidad de un fluído en movimiento dentro de una cañeria, se produce un violento cambio de presión. Este fenómeno transitorio, es denominado golpe de ariete, suele aparecer cuando se interviene en un aparato de la red (bombas, válvulas...). A lo largo de la cañeria se propagan ondas de sobrepresión y depresión a una velocidad "a", liamada velocidad de onda o celeridad.

Los golpes de ariete pueden producirse tambien en las cañerias a gravedad. Podemos destacar cuatro principales causas:

- la puesta en marcha y la parada de las bombas,
- el cierre de las válvulas, aparatos contra-incendio o de lavado,
- la presencia de aire,
- la mala utilización de los aparatos de protección.

CONSECUENCIAS

Las sobrepresiones pueden producir, en casos críticos, la ruptura de ciertas cañerias si no disponen de suficientes coeficientes de seguridad (cañerias de plástico). Las depresiones pueden crear bolsas de cavitación peligrosas para las cañerias, aparatos y válvulas, asi como su colapso (cañerias de acero o plástico).

EVALUACIÓN SIMPLIFICADA

Celeridad:

$$a = \sqrt{\frac{1}{\rho \left(\frac{1}{\varepsilon} + \frac{D}{Ee}\right)}}$$

Sobrepresión y depresión:

$$\Delta H = \pm a \frac{\Delta V}{g}$$
 (Allievi) (1)

$$\Delta H = \pm \frac{2 L \Delta V}{gt}$$
 (Michaud) (2)

donde:

a: celeridad (m/s)

P: densidad del líquido (agua: 1 000 kg/m³)

E: módulo de elasticidad del líquido (para la agua: 2,05 x 109 N/m²)

E: módulo de elasticidad del material de la cañeria (hierro fundido dúctil: 1,7 x 10¹¹ N/m²)

D: diámetro interior de la tubería (m)

e: espesor de las paredes del caño (m)

∆v: valor absoluto de la diferencia entre las velocidades en régimen permanente antes y después del golpe de ariete (m/s)

▲H: valor absoluto de la sobrepresión o de la presión máxima frente la presión estática normal (m.c.a.)

L: longitud de la cañeria (m)

t: tiempo critico de cierre (s)

g: aceleración de la gravedad ((9,81 m/s²)

En la práctica, la velocidad de la onda de agua en los caños de hierro fundido dúctil es del orden de 1200 m/s. La fórmula (1) tiene en consideración la variación rápida de la velocidad del caudal:

$$(t < 2L \div a)$$

La fórmula (2) considera una variación lineal de la velocidad del caudal en función del tiempo (función de una ley de cierre de una válvula, por ejemplo):

$$(t > 2L \div a)$$

La presión cambia de ± H alrededor de la presión estática normal. Por ejemplo, este valor es máximo para el cierre instantaneo de una válvula.

Estas fórmulas simplificadas dan un valor máximo del golpe de ariete y deben ser utilizadas con prudencia. Suponen que la cañeria no está equipada con dispositívo de protección y que las pérdidas de cargas son ínfimas. Asi como no son considerados factores limitantes, como el funcionamiento de las bombas como turbinas o la presión del vapor saturado en la depresion.

Ejemplos

Cañeria DN 200, K9, longitud 1.000 m, velocidad de bombeo 1,5 m/s: a = 1200 m/s

 caso nº 1: parada brusca de una bomba (pérdida de carga despreciables, sin protección anti golpe de ariete)

$$\triangle$$
 H = \pm [(1200 × 1,5) \div 9,81] = 183m (o poco más de 1,8 MPa)

caso nº 2: cierre brusco de una válvula (tiempo de cierre en tres segundos):

$$\Lambda H = \pm [(2 \times 1000 \times 1,5) \div (9,81 \times 3)] = 102m$$
 (o poco más de 1,0 MPa)

EVALUACIÓN COMPLETA

El método gráfico de Bergeron permite determinar con precisión las presiones y caudal en función del tiempo, en todos los lugares de una cañeria sometida al golpe de ariete. Existen programas de informática adaptados a la solución de estos problemas.

PREVENCIÓN

Las protecciones, necesarias en las cañerias para limitar el golpe de ariete a un valor admisible, son diferentes y adaptadas a cada caso. Actuando para atenuar la modificación de la velocidad del fluido, o limitando la sobrepresión en relación a la depresión.

El fabricante debe determinar la amplitud de la sobrepresión y depresión originada por el golpe de ariete, definiendo, a partir del perfil de la cañeria, la protección adecuada:

- volante de inércia en la bomba,
- válvula de alívio*,
- válvula anticipadora de onda*,
- válvula controladora de bomba*,
- chimenea de equilibrio,
- tanque de alimentación unidireccional TAU
- tanque hidroneumático RHO

* Vea Válvulas de Control.

Consideraciones

Por otro lado las cañerias de hierro dúctil tienen una reserva de seguridad significativa:

- en la sobrepresión: la reserva de seguridad de los caños permite un aumento de 20% de la presión máxima de servicio admisible con relación a las sobrepresiones transitórias,
- en la depresión: la junta garantiza la estanqueidad con respecto al exterior, como tambien en caso de vacio parcial en la cañeria.

PÉRDIDAS DE CARGA

Las pérdidas de carga son pérdidas de energía hidráulica esencialmente debidas a la viscosidad del agua y al rozamiento de ésta contra las paredes internas. Tienen por consecuencia:

- una caída de presión global, en una red a gravedad
- un gasto adicional de energía para el bombeo en una cañeria de impulsión.

Para determinar el diámetro de una cañeria de hierro fundido dúctil revestida interiormente con mortero de cemento, generalmente se adopta un coeficiente de rugosidad k = 0,1mm.

Vea También:

- **M** Fórmulas
- ☑ Rugosidad superficial de los revestimientos interiores con mortero de cemento
- **Evolución a través del tiempo**
- Pérdidas de carga (Tablas)

FÓRMULAS

Fórmulas

La fórmula de Darcy es la fórmula general para calcular las pérdidas de carga:

$$j = \frac{\lambda}{D} \times \frac{V^2}{2g} = \frac{8 \lambda Q^2}{\pi^2 g D^5}$$

j: pérdida de carga (en m por m de caño)

λ: coeficiente de fricción, adimensional (fórmula de Colebrook-White)

D: diámetro interno del caño (m)

V: velocidad del fluído (m/s)

Q: caudal (m³/s)

9: aceleración de la gravedad (m/s²).

■ Fórmula de Colebrook-White

La fórmula de Colebrook-White que se utiliza ahora de manera universal para determinar el coeficiente de fricción:

$$\frac{1}{\sqrt{\lambda}} = -2 \log \left(\frac{2,51}{\text{Re} \sqrt{\lambda}} + \frac{k}{3,71 \text{ D}} \right)$$

Re = VD ÷ # (Número de Reynolds)

μ: viscosidad cinemática del fluído a la temperatura de funcionamiento (en m²/s).

k: rugosidad de superficie equivalente de la pared del caño o rugosidad absoluta (m); obsérvese que no es igual a la altura de las desigualdades superficiales, sino que es una dimensión ficticia relativa a la rugosidad superficial, de ahí el término equivalente.

Los dos términos de la función logarítmica corresponden:

- para el primer término (2,51 ÷ Re), a la parte de la pérdidas de carga debidas a la fricción interna del fluido:
- para el segundo término (k ÷ 3,71 D), a la parte de las pérdidas de la carga causadas por el frontamiento del fluído contra la pared del caño; para los caños idealmente lisos (k = 0), este término es nulo y la pérdida de carga se debe simplemente a la fricción interna del fluído.

Fórmula de Hazen-Williams

La fórmula de Hazen-Williams, con su factor numérico en unidades métricas, es la siguiente:

$$j = 10,643 Q^{1,852} \times C^{-1,852} \times D^{-4,87}$$

Donde:

 $Q = caudal (m^3/s)$

D = diámetro interno del caño (m)

j = pérdida de carga unitária (m/m)

C = coeficiente que depende de la naturaleza de las paredes de los caños (material y estado) .

RUGOSIDAD SUPERFICIAL DE LOS REVESTIMIENTOS INTERIORES CON MORTERO DE CEMENTO

Los revestimientos interiores con mortero de cemento centrifugado presentan una superficie lisa y regular. Una serie de pruebas han sido realizadas para determinar el valor de k de la rugosidad superficial de los caños recién revestidos interiormente con cemento, hallándose un valor promedio de 0,03mm, lo que corresponde a una pérdida de carga adicional del 5 a 7% (según el diámetro del caño) en comparación con un caño perfectamente liso con un valor de k = 0 (calculado con una velocidad de 1m/s).

Sin embargo, la rugosidad de superficie equivalente de una cañeria no depende solamente de la uniformidad de la pared del caño sino también, del número de codos, tes y conexiones, así como de las irrregularidades del perfil de la cañeria. La experiencia muestra que k = 0,1mm es un valor razonable para ser adoptado en caso de cañerias de distribuición de agua potable. En el caso de cañerias de gran longitud, que presenten un reducido número de conexiones por kilometro, k puede ser un poco menor (0,06 a 0,08mm).

Por lo que antecede, se pueden hacer tres observaciones sobre las pérdidas de carga en las cañerias de agua que trabajan a presión:

- las pérdidas de carga corresponden a la energía que es preciso proveer para que el agua circule por la cañeria, y se deben a la suma de 3 factores:
 - la fricción del agua con ella misma (en relación a su viscosidad)
 - la fricción del agua con la pared del tubo (en relación a la rugosidad)
 - las modificaciones locales de escurrimiento (curvas, juntas...)

- es la fricción del agua con ella misma (factor a) la que constituye en la práctica lo esencial de las pérdidas de carga; en tanto que la fricción del agua con las paredes (factor b) que solamente depende del tipo de caño, es menor: poco más de 7% del (factor a) para un caño de hierro fundido cementado (k = 0,03mm).
- el diámetro interno real de la cañeria tiene una influencia considerable:
 - para un dado caudal (caso general), a cada 1% de menos en el diámetro, le corresponde un 5% o más en las pérdidas de carga
 - para una determinada carga (conducción por gravedad), a cada 1% de menos en el diámetro, le corresponde un 2,5% menos de caudal obtenido.

EVOLUCIÓN A TRAVÉS DEL TIEMPO

Una série de investigaciónes en los Estados Unidos sobre las canalizaciones viejas y recientes de hierro fundido, revestidas interiormente con el mortero del cemento, divulgó valores de **C** (segun la fórmula de Hazen-Williams) para una gama amplia de diámetros de caños y del tiempo de servicio.

El cuadro abajo demuestra estos resultados dando valores **C** consintidos en equivalentes de valores de k (en la fórmula de Coolebrook-White).

Comentario

En algunos casos del transporte del agua bruta a baja saida, la experiencia muestra que cualquiera que sea la natureza del material de la canalización, es necesario prever un aumento \mathbf{k} en el transcurso del tiempo.

Estos resultados mencionan diversos tipos de cubierta internas en cemento y del agua proviniente de zonas geográficas muy diversas.

Puede ser concluido que:

- las canalizaciones cubiertas internamente con el mortero del cemento aseguran una gran capacidad de saida contante con el pasar del tiempo,
- un valor global de k = 0,1mm constituye una hipótesis razonable y segura para el cálculo de las pérdidas de carga, a largo plazo, de los caños cubiertos internamente con el mortero del cemento y destinados al transporte de las aguas potables.

DN	Año de instalación	Edad en el momento de la medición años	Valor del coeficiente C Hazen-Williams	Valor de k Collebrook-White mm
		0	145	0,025
150	1941	12	146	0,019
		16	143	0,060
		16	134	0,148
250	1925	32	135	0,135
		39	138	0,098
		13	134	0,160
300	1928	29	137	0,119
		36	146	0,030
		13	143	0,054
300	1928	29	140	0,075
		36	140	0,075
700	1939	19	148	0,027
700	1939	25	146	0,046
700	1944	13	148	0,027
700	1944	20	146	0,046

(Journal AWWA - Junio 1974)

PÉRDIDAS DE CARGA (TABLAS)

Las tablas de pérdidas de carga para canalizaciones de hierro fundido dúctil revestidas internamente con mortero de cemento, se apresentan en las páginas siguientes.

Hipóteses asumidas para el cálculo:

- cañaria llena de agua,
- DN 80 a 1200,
- coeficiente de rugosidad: **k** = 0,03 mm e 0,1 mm,
- viscosidad cinemática del água: V = 1,01 x 10-6 m²/s,
- temperatura del água: T = 20° C.

Ver las tablas de Pérdidas de Carga:

- DN 80 a 150
- DN 200 a 300
- DN 350 a 450
- DN 500 a 700
- DN 800 e 900
- DN 1000 e 1200
- DN 1400 e 1600
- DN 1800 e 2000

DN 80 A 150 PÉRDIDAS DE CARGA

		DN 80			DN 100			DN 150	
Velocidad	Pérdida de	Pérdida de			Pérdida de		Pérdida de		
relocidad	carga k=0,03mm	carga k=0,1mm	Caudal	carga k=0,03mm	carga k=0,1mm	Caudal	carga k=0,03mm	carga k=0,1mm	Caudal
m/s	m/km	m/km	I/s	m/km	m/km	l/s	m/km	m/km	I/s
0,30	1,47	1,66	1,51	1,12	1,19	2,36	0,67	0,72	5,30
0,35	1,94	2,19	1,76	1,47	1,58	2,75	0,89	0,95	6,19
0,40	2,46	2,79	2,01	1,87	2,02	3,14	1,13	1,22	7,07
0,45	3,04	3,46	2,26	2,30	2,52	3,53	1,40	1,52	7,95
0,50	3,67	4,20	2,51	2,79	3,06	3,93	1,70	1,85	8,84
0,55	4,36	5,00	2,76	3,32	3,66	4,32	2,02	2,21	9,72
0,60	5,14	5,91	3,02	3,89	4,31	4,71	2,37	2,60	10,60
0,65	5,94	6,85	3,27	4,51	5,01	5,11	2,74	3,02	11,49
0,70	6,79	7,86	3,52	5,16	5,76	5,50	3,14	3,48	12,37
0,75	7,70	8,94	3,77	5,85	6,56	5,89	3,56	3,96	13,25
0,80	8,66	10,08	4,02	6,58	7,41	6,28	4,01	4,48	14,14
0,85	9,67	11,29	4,27	7,37	8,31	6,68	4,49	5,02	15,02
0,90	10,73	12,56	4,52	8,18	9,26	7,07	4,98	5,60	15,90
0,95	11,89	13,96	4,78	9,03	10,26	7,46	5,51	6,20	16,79
1,00	13,07	15,37	5,03	9,92	11,31	7,45	6,05	6,84	17,67
1,05	14,29	16,84	5,28	10,87	12,42	8,25	6,63	7,51	18,56
1,10	15,56	18,38	5,53	11,84	13,57	8,64	7,22	8,21	19,44
1,15	16,89	19,99	5,78	12,85	14,77	9,03	7,84	8,94	20,32
1,20	18,27	21,67	6,03	13,89	16,03	9,42	8,49	9,69	21,21
1,25	19,70	23,40	6,28	15,01	17,33	9,82	9,16	10,48	22,09
1,30	21,18	25,21	6,53	16,14	18,69	10,21	9,85	11,30	22,97
1,35	22,77	27,16	6,79	17,30	20,09	10,60	10,58	12,15	23,86
1,40	24,35	29,10	7,04	18,54	21,55	11,00	11,31	13,04	24,74
1,45	25,99	31,10	7,29	19,78	23,05	11,39	12,08	13,95	25,62
1,50	27,68	33,17	7,54	21,06	24,61	11,78	12,87	14,89	26,51
1,55	29,41	35,31	7,79	22,38	26,21	12,17	13,68	15,89	27,39
1,60	31,20	37,51	8,04	23,78	27,87	12,17	14,52	16,86	28,27
1,65	33,04	39,78	8,29	25,78	29,58	12,96	15,39	17,90	29,16
1,70	35,00	42,20	8,55	26,62	31,33	13,35	16,27	18,96	30,04
1,75	36,95	44,60	8,80	28,09	33,14	13,74	17,19	20,05	30,93
1,80	38,94	47,07	9,05	29,65	35,00	14,14	18,12	21,18	31,81
1,85	40,98	49,60	9,30	31,20	36,90	14,53	19,07	22,33	32,69
1,90	43,07	52,20	9,55	32,79	38,86	14,92	20,06	23,52	33,58
1,95	45,22	54,87	9,80	34,47	40,87	15,32	21,06	24,73	34,46
2,00	47,41	57,59	10,05	36,14	42,93	15,71	22,09	25,98	35,34
2,00	49,65	60,39	10,03	37,85	45,03	16,10	23,15	27,25	36,23
2,10	52,04	63,67	10,56	39,59	47,19	16,49	24,22	28,56	37,11
2,10	54,39	66,29	10,81	41,42	49,40	16,49	25,32	29,90	37,11
2,13	56,78	69,29	11,06	43,25	51,66	17,28	26,45	31,26	38,88
2,25	59,23	72,35	11,31	45,25	53,97	17,28	27,59	32,66	39,76
2,30	61,73	75,47	11,56	47,01	56,32	18,06	28,76	34,09	40,64
2,35	64,27	78,66	11,81	48,99	58,73	18,46	29,97	35,55	41,53
2,33	66,87	81,92	12,06	50,97	61,19	18,85	31,18	37,04	42,41
2,45	69,63	85,37	12,32	52,99	63,70	19,24	32,43	38,56	43,30
2,50	72,32	88,76	12,52	55,10	66,26	19,64	33,69	40,10	44,18
2,55	75,07	92,22	12,82	57,19	68,87	20,03	34,98	41,68	45,06
2,60	77,87	95,74	13,07	59,32	71,53	20,03	36,30	43,29	45,06
2,65	80,72	99,32	13,07	61,49	74,24	20,42	37,78	44,93	46,83
2,70	83,62	102,97	13,57	63,75	77,00	21,21	38,99	46,61	47,71
2,75	86,57	102,97	13,82	65,99	79,81	21,60	40,38	48,31	48,60
2,80	89,57	110,47	14,07	68,28	82,67	21,00	41,78	50,04	49,48
2,85	92,74	114,48	14,07	70,60	85,58	22,38	43,21	51,80	50,36

2,90	95,84	118,39	14,58	73,02	88,54	22,78	44,68	53,59	51,25
2,95	98,99	122,37	14,83	75,42	91,55	23,17	46,15	55,41	52,13
3,00	102,19	126,42	15,08	77,85	94,61	23,56	47,64	57,27	53,01

DN 200 A 300 PÉRDIDAS DE CARGA

		DN 200			DN 250			DN 300	
Velocidad	Pérdida de	Pérdida de		Pérdida de	Pérdida de		Pérdida de	Pérdida de	
Velocidad	carga k=0,03mm	carga k=0,1mm	Caudal	carga k=0,03mm	carga k=0,1mm	Caudal	carga k=0,03mm	carga k=0,1mm	Caudal
m/s	m/km	m/km	l/s	m/km	m/km	l/s	m/km	m/km	I/s
0,30	0,47	0,50	9,42	0,36	0,38	14,73	0,29	0,31	21,21
0,35	0,63	0,67	11,00	0,47	0,51	17,18	0,38	0,41	24,74
0,40	0,80	0,86	12,57	0,60	0,65	19,63	0,48	0,52	28,27
0,45	0,99	1,06	14,14	0,75	0,81	22,09	0,60	0,65	31,81
0,50	1,20	1,30	15,71	0,91	0,99	24,54	0,73	0,79	35,34
0,55	1,42	1,55	17,28	1,08	1,18	27,00	0,87	0,94	38,88
0,60	1,62	1,82	18,55	1,27	1,39	29,45	1,02	1,11	42,41
0,65	1,93	2,12	20,42	1,47	1,61	31,91	1,18	1,29	45,95
0,70	2,21	2,44	21,99	1,69	1,86	34,36	1,35	1,48	49,48
0,75	2,51	2,78	23,56	1,92	2,11	36,82	1,54	1,69	53,01
0,80	2,83	3,14	25,13	2,16	2,39	39,27	1,73	1,91	56,55
0,85	3,16	3,52	26,70	2,41	2,68	41,72	1,94	2,15	60,08
0,90	3,52	3,93	28,27	2,68	2,99	44,18	2,15	2,39	63,62
0,95	3,89	4,35	29,85	2,97	3,31	46,63	2,38	2,65	67,15
1,00	4,27	4,80	31,42	3,26	3,65	49,09	2,62	2,92	70,69
1,05	4,68	5,27	32,99	3,57	4,01	51,54	2,87	3,21	74,22
1,10	5,10	5,76	34,56	3,89	4,38	54,00	3,13	3,51	77,75
1,15	5,54	6,27	36,13	4,23	4,77	56,45	3,40	3,82	81,29
1,13	6,00	6,80	37,70	4,23	5,18	58,90	3,40	4,15	84,82
1,25	6,47	7,36	39,27	4,94	5,60	61,36	3,97	4,48	88,36
1,30	6,96	7,30	40,84	5,32	6,04	63,81	4,27	4,46	91,89
1,35	7,47	8,53	42,41	5,32		66,27	4,59	5,20	95,43
1,40	7,47		43,98	6,11	6,49 6,96	68,72	4,59	5,58	98,96
1,45	8,53	9,15 9,79	45,55	6,52	7,45	71,18	5,24	5,97	102,49
1,45	9,09		45,55	6,95	7,45	73,63	5,58	6,37	102,49
		10,45							
1,55	9,67	11,13	48,69	7,39	8,48	76,09	5,94	6,79	109,56
1,60	10,26 10,87	11,84	50,27	7,84	9,01	78,54	6,31	7,22	113,10
1,65 1,70	11,50	12,56	51,84	8,31	9,56	80,99 83,45	6,68	7,66	116,63
		13,31	53,41	8,79	10,13		7,07	8,11	120,17
1,75	12,14	14,08	54,98	9,29	10,72	85,90	7,46	8,58	123,70
1,80	12,81	14,87	56,55	9,79	11,32	88,36	7,87	9,06	127,23
1,85	13,48	15,68	58,12	10,31	11,94	90,81	8,29	9,56	130,77
1,90	14,18	16,51	59,69	10,84	12,57	93,27	8,72	10,07	134,30
1,95	14,89	17,37	61,26	11,39	13,22	95,72	9,15	10,59	137,84
2,00	15,62	18,24	62,83	11,95	13,88	98,18	9,60	11,12	141,37
2,05	16,36	19,14	64,40	12,52	14,57	100,63	10,06	11,67	144,91
2,10	17,12	20,05	65,97	13,10	15,27	103,08	10,53	12,23	148,44
2,15	17,90	20,99	67,54	13,69	15,98	105,54	11,01	12,80	151,98
2,20	18,70	21,95	69,12	14,30	16,71	107,99	11,50	13,38	155,51
2,25	19,51	22,93	70,69	14,93	17,46	110,45	12,00	13,98	159,04
2,30	20,34	23,94	72,26	15,56	18,22	112,90	12,51	14,59	162,58
2,35	21,19	24,96	73,83	16,21	19,00	115,36	13,03	15,22	166,11
2,40	22,05	26,01	75,40	16,87	19,80	117,81	13,56	15,86	169,65
2,45	22,93	27,07	76,97	17,54	20,61	120,26	14,11	16,51	173,18
2,50	23,82	28,16	78,54	18,23	21,44	122,72	14,66	17,17	176,72
2,55	24,74	29,27	80,11	18,93	22,28	125,17	15,22	17,85	180,25
2,60	25,67	30,40	81,68	19,64	23,14	127,63	15,79	18,54	183,78
2,65	26,61	31,55	83,25	20,36	24,02	130,08	16,38	19,24	187,32
2,70	27,56	32,73	84,82	21,10	24,91	132,54	16,97	19,95	190,85
2,75	28,55	33,92	86,39	21,85	25,82	134,99	17,57	20,68	194,39
2,80	29,55	35,14	87,96	22,62	26,75	137,45	18,19	21,43	197,92
2,85	30,57	36,38	89,54	23,39	27,69	139,90	18,81	22,18	201,46

	2,90	31,60	37,63	91,11	24,18	28,65	142,35	19,44	22,95	204,99
	2,95	32,64	38,91	92,68	24,98	29,62	144,81	20,09	23,73	208,52
Г	3,00	33,71	40,21	94,25	25,79	30,62	147,26	20,74	24,52	212,06

DN 350 A 450 PÉRDIDAS DE CARGA

		DN 350			DN 400			DN 450	
Velocidad	Pérdida de carga k=0,03mm	Pérdida de carga k=0,1mm	Caudal	Pérdida de carga k=0,03mm	Pérdida de carga k=0,1mm	Caudal	Pérdida de carga k=0,03mm	Pérdidaa de carga k=0,1mm	Caudal
m/s	m/km	m/km	l/s	m/km	m/km	l/s	m/km	m/km	l/s
0,30	0,24	0,25	28,86	0,20	0,21	37,30	0,18	0,19	47,71
0,35	0,32	0,34	33,67	0,27	0,29	43,98	0,23	0,25	55,67
0,40	0,40	0,43	38,48	0,34	0,37	50,27	0,30	0,32	63,62
0,45	0,50	0,54	43,30	0,43	0,46	56,55	0,37	0,40	71,57
0,50	0,61	0,65	48,11	0,52	0,56	62,83	0,45	0,48	79,52
0,55	0,72	0,78	52,92	0,62	0,66	69,12	0,54	0,58	87,47
0,60	0,85	0,92	57,73	0,72	0,78	75,40	0,63	0,68	95,43
0,65	0,98	1,07	62,54	0,84	0,91	81,68	0,73	0,79	103,38
0,70	1,13	1,23	67,35	0,96	1,05	87,96	0,83	0,91	111,33
0,75	1,28	1,40	72,16	1,09	1,19	94,25	0,95	1,03	119,28
0,80	1,44	1,59	76,97	1,23	1,35	100,53	1,07	1,17	127,23
0,85	1,61	1,78	81,78	1,37	1,51	106,81	1,19	1,31	135,19
0,90	1,80	1,98	86,59	1,53	1,69	113,10	1,33	1,46	143,14
0,95	1,98	2,20	91,40	1,69	1,87	119,38	1,47	1,62	151,09
1,00	2,18	2,42	96,21	1,86	2,06	125,66	1,61	1,79	159,04
1,05	2,39	2,66	101,02	2,03	2,26	131,95	1,77	1,96	167,00
1,10	2,60	2,91	105,83	2,22	2,47	138,23	1,93	2,15	174,95
1,15	2,83	3,17	110,64	2,41	2,70	144,51	2,09	2,34	182,90
1,20	3,06	3,44	115,45	2,61	2,92	150,80	2,27	2,54	190,85
1,25	3,34	3,72	120,96	2,82	3,16	157,08	2,45	2,74	198,80
1,30	3,55	4,01	125,07	3,03	3,41	163,36	2,63	2,96	206,76
1,35	3,81	4,31	129,89	3,25	3,67	169,65	2,83	3,18	214,71
1,40	4,00	4,62	134,70	3,48	3,93	175,93	3,03	3,41	222,66
1,45	4,36	4,95	139,51	3,72	4,21	182,21	3,23	3,65	230,61
1,50	4,65	5,28	144,32	3,96	4,49	188,50	3,45	3,90	238,57
1,55	4,94	5,63	149,13	4,22	4,79	194,78	3,66	4,15	246,32
1,60	5,25	5,98	153,94	4,47	5,09	201,06	3,89	4,42	254,47
1,65	5,56	6,35	158,75	4,74	5,40	207,35	4,12	4,69	262,42
1,70	5,88	6,73	163,56	5,02	5,72	213,63	4,36	4,96	270,37
1,75	6,21	7,12	168,37	5,30	6,05	219,91	4,60	5,25	278,33
1,80	6,55	7,52	173,18	5,59	6,39	226,20	4,86	5,55	286,28
1,85	6,89	7,93	177,99	5,88	6,74	232,48	5,11	5,85	294,23
1,90	7,25	8,35	182,80	6,19	7,10	238,76	5,38	6,16	302,18
1,95	7,62	8,78	187,61	6,50	7,47	245,04	5,65	6,48	310,14
2,00	7,99	9,22	192,42	6,82	7,85	251,33	5,93	6,80	318,09
2,05	8,38	9,68	197,33	7,14	8,23	257,61	6,21	7,14	326,04
2,10	8,76	10,14	202,04	7,47	8,63	263,89	6,50	7,48	333,99
2,15	9,16	10,61	206,86	7,82	9,03	270,18	6,79	7,83	341,94
2,20	9,57	11,10	211,67	8,16	9,44	276,46	7,10	8,19	349,90

2,25	9,99	11,60	216,48	8,52	9,87	282,74	7,41	8,56	357,85
2,30	10,41	12,10	221,29	8,88	10,30	289,03	7,72	8,93	365,80
2,35	10,84	12,62	226,10	9,25	10,74	295,31	8,04	9,31	373,75
2,40	11,29	13,15	230,91	9,63	11,19	301,59	8,37	9,70	381,71
2,45	11,74	13,69	235,72	10,01	11,65	307,88	8,71	10,10	389,66
2,50	12,20	14,24	240,53	10,41	12,12	314,16	9,05	10,51	397,61
2,55	12,67	14,80	245,34	10,81	12,59	320,44	9,40	10,92	405,56
2,60	13,14	15,37	250,15	11,21	13,08	326,73	9,75	11,35	413,51
2,65	13,63	15,96	254,96	11,63	13,58	333,01	10,11	11,78	421,47
2,70	14,12	16,55	259,77	12,05	14,08	339,29	10,48	12,21	429,42
2,75	14,62	17,15	264,58	12,48	14,59	345,58	10,85	12,66	437,37
2,80	15,14	17,77	269,39	12,91	15,12	351,86	11,23	13,11	445,32
2,85	15,65	18,40	274,20	13,36	15,65	358,14	11,61	13,58	453,28
2,90	16,18	19,03	279,01	13,81	16,19	364,43	12,04	14,02	461,83
2,95	16,72	19,68	283,82	14,26	16,74	370,71	12,40	14,52	469,18
3,00	17,27	20,34	288,64	14,73	17,30	376,99	12,81	15,01	477,13

DN 500 A 700 PÉRDIDAS DE CARGA

		DN 500			DN 600			DN 700	
Velocidad	Pérdida de	Pérdida de		Pérdida de	Pérdida de		Pérdida de	Pérdida de	
Velocidad	carga k=0,03mm	carga k=0.1mm	Caudal	carga k=0,03mm	carga k=0.1mm	Caudal	carga k=0,03mm	carga k=0.1mm	Caudal
m/s	m/km	m/km	l/s	m/km	m/km	l/s	m/km	m/km	l/s
0,30	0,16	0,16	58,90	0,13	0,13	84,82	0,10	0,11	115,45
0,35	0,21	0,22	68,72	0,17	0,17	98,96	0,14	0,14	134,70
0,40	0,26	0,28	78,54	0,21	0,22	113,10	0,18	0,19	153,94
0,45	0,33	0,35	88,36	0,26	0,28	127,23	0,10	0,23	173,18
0,50	0,40	0,42	98,17	0,32	0,34	141,37	0,27	0,28	192,42
0,55	0,47	0,51	107,99	0,38	0,41	155,51	0,32	0,34	211,67
0,60	0,55	0,60	117,81	0,45	0,48	169,65	0,37	0,40	230,91
0,65	0,64	0,69	127,63	0,52	0,56	183,78	0,43	0,46	250,15
0,70	0,74	0,80	137,44	0,59	0,64	197,92	0,49	0,53	269,39
0,75	0,84	0,91	147,26	0,67	0,73	212,06	0,56	0,61	288,63
0,80	0,94	1,03	157,08	0,76	0,83	226,20	0,63	0,69	307,88
0,85	1,05	1,16	166,90	0,76	0,93	240,33	0,71	0,03	327,12
0,90	1,17	1,29	176,71	0,03	1,03	254,47	0,71	0,86	346,36
0,95	1,17	1,43	186,53	1,04	1,15	268,61	0,78	0,95	365,60
1,00	1,42	1,43	196,35	1,15	1,13	282,74	0,96	1,05	384,85
1,05	1,56	1,73	206,17	1,13	1,39	296,88	1,05	1,15	404,09
1,10	1,70	1,73	215,98	1,37	1,59	311,02	1,14	1,13	423,33
1,15	1,70	2,06	225,80	1,49	1,65	325,16	1,14	1,37	442,57
1,13	2,00	2,00	235,62	1,49	1,79	339,29	1,34	1,49	461,82
1,25	2,00	2,23	245,44	1,74	1,79	353,43	1,34	1,49	481,06
1,30	2,32	2,60	255,26	1,87	2,09	367,57	1,56	1,74	500,30
1,35	2,49	2,80	265,07	2,01	2,25	381,70	1,67	1,87	519,54
1,40	2,67	3,00	274,89	2,15	2,41	395,84	1,79	2,01	538,03 558,03
1,45	2,85	3,22	284,71	2,30	2,58	409,98	1,92	2,15	
1,50	3,04	3,43	294,53	2,45	2,76	424,12	2,04	2,29	577,27
1,55	3,23	3,66	304,34	2,60	2,94	438,25	2,17	2,44	596,51
1,60	3,43	3,89	314,16	2,76	3,12	452,39	2,30	2,60	615,75
1,65	3,64	4,13	323,98	2,93	3,31	466,53	2,44	2,75	635,00
1,70	3,85	4,37	333,80	3,10	3,51	480,67	2,58	2,92	654,24
1,75	4,06	4,63	343,61	3,27	3,71	494,80	2,73	3,09	673,48
1,80	4,28	4,88	353,43	3,45	3,92	508,94	2,88	3,26	692,72
1,85	4,51	5,15	363,25	3,64	4,14	523,08	3,03	3,44	711,97
1,90	4,75	5,42	373,07	3,82	4,36	537,21	3,19	3,62	731,21
1,95	4,98	5,71	382,88	4,02	4,58	551,35	3,35	3,81	750,45
2,00	5,23	5,99	392,70	4,21	4,81	565,49	3,51	4,00	769,69
2,05	5,48	6,29	402,52	4,41	5,05	579,63	3,68	4,20	788,94
2,10	5,73	6,59	412,34	4,62	5,29	593,76	3,85	4,40	808,18
2,15	6,00	6,90	422,15	4,83	5,54	607,90	4,03	4,61	827,42
2,20	6,26	7,21	431,97	5,05	5,79	622,04	4,21	4,82	846,66
2,25	6,54	7,54	441,79	5,27	6,05	636,17	4,39	5,03	865,90
2,30	6,81	7,87	451,61	5,49	6,32	650,31	4,58	5,25	885,15
2,35	7,10	8,20	461,42	5,72	6,59	664,45	4,77	5,48	904,39
2,40	7,39	8,55	471,24	5,95	6,86	678,59	4,96	5,71	923,63
2,45	7,68	8,90	481,06	6,19	7,15	692,72	5,16	5,94	942,87
2,50	7,99	9,26	490,88	6,44	7,43	706,86	5,36	6,18	962,12
2,55	8,29	9,62	500,69	6,68	7,73	721,00	5,57	6,42	981,36
2,60	8,60	9,99	510,51	6,93	8,03	735,14	5,78	6,67	1000,60
2,65	8,92	10,37	520,33	7,19	8,33	749,27	5,99	6,92	1019,84
2,70	9,25	10,76	530,15	7,45	8,64	763,41	6,21	7,18	1039,09
2,75	9,57	11,15	539,96	7,72	8,96	777,55	6,43	7,44	1058,33
2,80	9,91	11,55	549,78	7,99	9,28	791,68	6,66	7,71	1077,57
2,85	10,25	11,96	559,60	8,26	9,60	805,82	6,89	7,98	1096,81

2,9	0 10,60	12,37	569,42	8,54	9,94	819,96	7,12	8,26	1116,06
2,9	5 10,95	12,79	579,23	8,82	10,27	834,10	7,36	8,54	1135,30
3,0	0 11,30	13,22	589,05	9,11	10,62	848,23	7,60	8,83	1154,54

DN 800 Y 900 PÉRDIDAS DE CARGA

		DN 800		DN 900				
Velocidad	Pérdida de carga k=0,03mm	Pérdida de carga k=0,1mm	Caudal	Pérdida de carga k=0,03mm	Pérdida de carga k=0,1mm	Caudal		
m/s	m/km	m/km	I/s	m/km	m/km	I/s		
0,30	0,09	0,09	150,80	0,08	0,08	190,85		
0,35	0,09	0,09	175,93	0,08	0,11	222,66		
0,40	0,15	0,16	201,06	0,13	0,14	254,47		
0,45	0,19	0,20	226,20	0,16	0,17	286,28		
0,50	0,23	0,24	251,33	0,20	0,21	318,09		
0,55	0,27	0,29	276,46	0,23	0,25	349,90		
0,60	0,32	0,34	301,59	0,28	0,29	381,70		
0,65	0,37	0,39	326,73	0,32	0,34	413,51		
0,70	0,42	0,45	351,86	0,37	0,39	445,35		
0,75	0,48	0,52	376,99	0,42	0,45	477,13		
0,80	0,54	0,58	402,12	0,47	0,51	508,94		
0,85	0,60	0,66	427,26	0,52	0,57	540,75		
0,90	0,67	0,73	452,39	0,58	0,64	572,56		
0,95	0,74	0,81	477,52	0,64	0,71	604,36		
1,00	0,82	0,90	502,66	0,71	0,78	636,17		
1,05	0,89	0,98	527,79	0,78	0,85	667,98		
1,10	0,97	1,07	552,92	0,85	0,93	699,79		
1,15	1,06	1,17	578,05	0,92	1,02	731,60		
1,20	1,15	1,27	603,19	1,00	1,10	763,41		
1,25	1,24	1,37	628,32	1,08	1,19	795,22		
1,30	1,33	1,48	653,45	1,16	1,29	827,03		
1,35	1,43	1,59	678,59	1,24	1,38	858,83		
1,40	1,53	1,71	703,72	1,33	1,48	890,64		
1,45	1,63	1,83	728,85	1,42	1,59	922,45		
1,43	1,74	1,95	753,98	1,52	1,70	954,26		
1,55	1,85	2,08	779,12	1,61	1,81	986,07		
1,60	1,97	2,21	804,25	1,71	1,92	1017,88		
1,65	2,09	2,35	829,38	1,82	2,04	1049,69		
1,70	2,21	2,49	854,52	1,92	2,18	1081,50		
1,75	2,33	2,63	879,65	2,03	2,29	1113,31		
1,80	2,46	2,78	904,78	2,14	2,41	1145,11		
1,85	2,58	2,93	929,91	2,25	2,55	1176,92		
1,90	2,72	3,09	955,05	2,37	2,68	1208,73		
1,95	2,86	3,25	980,18	2,49	2,82	1240,54		
2,00	3,00	3,41	1005,31	2,61	2,96	1272,35		
2,05	3,14	3,58	1030,45	2,74	3,11	1304,16		
2,10	3,29	3,75	1055,58	2,86	3,26	1335,97		
2,15	3,44	3,93	1080,71	3,00	3,41	1367,78		
2,20	3,59	4,10	1105,84	3,13	3,57	1399,59		
2,25	3,75	4,29	1130,98	3,27	3,73	1431,39		
2,30	3,91	4,48	1156,11	3,40	3,89	1463,20		
2,35	4,07	4,67	1181,24	3,55	4,06	1495,01		
2,40	4,24	4,86	1206,38	3,69	4,23	1,526,82		
2,45	4,41	5,06	1231,51	3,84	4,40	1558,64		
2,50	4,58	5,27	1256,64	3,99	4,58	1590,44		
2,55	4,76	5,47	1281,77	4,14	4,76	1622,25		
2,60	4,76	5,69	1306,91	4,30	4,94	1654,06		
2,65	5,12	5,90	1332,04	4,46	5,13	1685,86		
2,70	5,31	6,12	1357,17	4,62	5,32	1717,67		
2,75	5,50	6,35	1382,31	4,79	5,51	1749,48		
2,80	5,69	6,57	1407,44	4,95	5,71	1781,29		
2,85	5,89	6,80	1432,57	5,12	5,91	1813,10		

2,90	6,08	7,04	1457,71	5,30	6,12	1844,91
2,95	6,29	7,28	1482,84	5,47	6,32	1876,72
3,00	6,49	7,52	1507,97	5,65	6,54	1908,53

DN 1000 Y 1200 PÉRDIDAS DE CARGA

		DN 1000		DN 1200				
Velocidad	Pérdida de	Pérdida de		Pérdida de	Pérdida de			
	carga k=0,03mm	carga k=0,1mm	Caudal	carga k=0,03mm	carga k=0,1mm	Caudal		
m/s	m/km	m/km	I/s	m/km	m/km	I/s		
0,30	0,07	0,07	235,62	0,06	0,06	339,29		
0,35	0,09	0,09	274,89	0,07	0,08	395,84		
0,40	0,12	0,12	314,16	0,09	0,10	452,39		
0,45	0,14	0,15	353,43	0,11	0,12	508,94		
0,50	0,17	0,18	392,70	0,14	0,15	565,49		
0,55	0,21	0,22	431,97	0,17	0,18	622,04		
0,60	0,24	0,26	471,24	0,20	0,21	678,58		
0,65	0,28	0,30	510,51	0,23	0,24	735,13		
0,70	0,32	0,35	549,78	0,26	0,28	791,68		
0,75	0,37	0,40	589,05	0,30	0,32	848,23		
0,73	0,37	0,45	628,32	0,33	0,36	904,78		
0,85	0,46	0,45	667,59	0,33	0,40	961,33		
0,90	0,51	0,56	706,86	0,41	0,45	1017,88		
0,95	0,57	0,62	746,13	0,46	0,50	1074,43		
1,00	0,63	0,69	785,40	0,51	0,55	1130,97		
1,05	0,69	0,75	824,67	0,55	0,61	1187,52		
1,10	0,75	0,82	863,94	0,60	0,66	1244,07		
1,15	0,81	0,90	903,21	0,66	0,72	1300,62		
1,20	0,88	0,97	942,48	0,71	0,78	1357,17		
1,25	0,95	1,05	981,75	0,77	0,85	1413,72		
1,30	1,02	1,14	1021,02	0,83	0,91	1470,27		
1,35	1,10	1,22	1060,29	0,89	0,98	1526,82		
1,40	1,18	1,31	1099,56	0,95	1,05	1583,37		
1,45	1,26	1,40	1138,83	1,01	1,13	1636,92		
1,50	1,34	1,50	1178,10	1,08	1,20	1696,46		
1,55	1,43	1,59	1217,37	1,15	1,28	1753,01		
1,60	1,51	1,69	1256,64	1,22	1,36	1809,56		
1,65	1,60	1,80	1295,91	1,29	1,45	1966,11		
1,70	1,70	1,91	1335,18	1,37	1,53	1922,66		
1,75	1,79	2,02	1374,45	1,45	1,62	1979,21		
1,80	1,89	2,13	1413,72	1,53	1,71	2035,76		
1,85	1,99	2,25	1452,99	1,61	1,81	2092,31		
1,90	2,09	2,37	1492,26	1,69	1,90	2148,86		
1,95	2,20	2,49	1531,53	1,78	2,00	2205,41		
2,00	2,31	2,61	1570,80	1,86	2,10	2261,95		
2,05	2,42	2,74	1610,07	1,95	2,21	2318,50		
2,10	2,51	2,87	1649,34	2,04	2,31	2375,05		
2,15	2,65	3,01	1688,61	2,14	2,42	2431,60		
2,20	2,76	3,15	1727,88	2,23	2,53	2488,15		
2,25	2,89	3,29	1767,15	2,33	2,65	2544,70		
2,30	3,01	3,43	1806,42	2,43	2,76	2601,25		
2,35	3,13	3,58	1845,69	2,53	2,88	2657,80		
2,40	3,26	3,73	1884,96	2,63	3,00	2714,35		
2,45	3,39	3,88	1924,23	2,74	3,12	2770,90		
2,50	3,53	4,04	1963,50	2,85	3,25	2827,45		
2,55	3,66	4,20	2002,77	2,96	3,38	2883,99		
2,60	3,80	4,36	2042,04	3,07	3,51	2940,54		
2,65	3,94	4,52	2042,04	3,18	3,64	2997,09		
2,70	4,08	4,69	2120,58	3,30	3,78	3053,64		
2,75	4,08	4,86	2159,85	3,42	3,91	3110,19		
2,73	4,23	5,04	2199,12	3,53	4,06	3110,19		
2,85	4,57	5,04	2199,12	3,66	4,20	3223,29		

2,90	4,68	5,39	2277,67	3,80	4,34	3279,84
2,95	4,84	5,58	2316,93	3,91	4,49	3336,39
3,00	4,99	5,77	2356,21	4,03	4,64	3392,93

DN 1400 Y 1600 PÉRDIDAS DE CARGA

DN 1400		DN 1500			DN 1600				
Velocidad	Pérdida	Pérdida		Pérdida	Pérdida		Pérdida	Pérdida	
	de carga k=0,03mm	de carga k= 0,1mm	Caudal	de carga k=0,03mm	de carga k= 0,1mm	Caudal	de carga k=0,03mm	de carga k= 0,1mm	Caudal
m/s	m/km	m/km	l/s	m/km	m/km	l/s	m/km	m/km	l/s
0,30	0,05	0,05	461,82	0,04	0,05	530,15	0,04	0,04	603,19
0,35	0,06	0,07	538,78	0,06	0,06	618,50	0,05	0,06	703,72
0,40	0,08	008	615,75	0,07	0,08	706,86	0,06	0,07	804,25
0,45	0,10	0,10	692,72	0,09	0,10	795,22	0,08	0,09	904,28
0,50	0,12	0,13	769,69	0,11	0,12	883,58	0,10	0,11	1005,31
0,55	0,14	0,15	846,66	0,13	0,14	971,93	0,12	0,13	1105,84
0,60	0,17	0,18	923,63	0,16	0,17	1060,29	0,14	0,15	1206,37
0,65	0,20	0,21	1000,60	0,18	0,19	1148,65	0,17	0,18	1306,91
0,70	0,23	0,24	1077,57	0,21	0,22	1237,01	0,19	0,20	1407,44
0,75	0,26	0,27	1154,54	0,24	0,25	1325,36	0,22	0,23	1507,97
0,80	0,29	0,31	1231,51	0,27	0,28	1413,72	0,25	0,26	1608,50
0,85	0,32	0,35	1308,48	0,30	0,32	1502,08	0,28	0,30	1709,03
0,90	0,36	0,39	1385,43	0,33	0,36	1590,44	0,31	0,33	1809,56
0,95	0,40	0,43	1462,41	0,36	0,39	1678,79	0,34	0,36	1910,09
1,00	0,44	0,47	1539,38	0,40	0,43	1767,15	0,37	0,40	2010,62
1,05	0,48	0,52	1616,35	0,44	0,48	1855,51	0,41	0,44	2111,16
1,10	0,52	0,56	1693,32	0,48	0,52	1943,87	0,45	0,48	2211,69
1,15	0,57	0,61	1770,29	0,52	0,57	2032,22	0,48	0,52	2312,22
1,20	0,61	0,67	1847,26	0,57	0,61	2120,58	0,52	0,57	2412,75
1,25	0,66	0,72	1924,23	0,61	0,66	2208,94	0,57	0,61	2513,28
1,30	0,71	0,77	2001,20	0,66	0,72	2297,30	0,61	0,66	2613,81
1,35	0,76	0,83	2078,17	0,71	0,77	2385,65	0,65	0,71	2714,34
1,40	0,82	0,89	2155,14	0,75	0,82	2474,01	0,70	0,76	2814,87
1,45	0,87	0,96	2232,11	0,81	0,88	2562,37	0,75	0,82	2915,40
1,50	0,93	1,02	2309,08	0,86	0,94	2650,73	0,80	0,87	3015,94
1,55	0,99	1,09	2386,05	0,91	1,00	2739,08	0,85	0,93	3116,47
1,60	1,05	1,16	2463,01	0,97	1,07	2827,44	0,90	0,99	3217,00
1,65	1,11	1,23	2539,98	1,03	1,13	2915,80	0,95	1,05	3317,53
1,70	1,18	1,30	2616,95	1,09	1,20	3009,16	1,01	1,11	3418,06
1,75	1,24	1,37	2693,92	1,15	1,27	3092,51	1,06	1,17	3518,59
1,80	1,31	1,45	2770,89	1,21	1,33	3180,87	1,12	1,24	3619,12
1,85	1,38	1,53	2847,86	1,27	1,41	3269,23	1,18	1,31	3719,65
1,90	1,45	1,61	2924,83	1,34	1,48	3357,57	1,24	1,38	3820,19
1,95	1,53	1,69	3001,80	1,41	1,56	3445,94	1,30	1,45	3920,72
2,00	1,60	1,78	3078,77	1,48	1,64	3534,30	1,37	1,52	4021,25
2,05	1,67	1,86	3155,74	1,55	1,72	3622,60	1,43	1,59	4121,78
2,10	1,75	1,95	3232,71	1,62	1,80	3711,02	1,50	1,67	4222,31
2,15	1,83	2,05	3309,68	1,69	1,89	3799,37	1,57	1,75	4322,84
2,20	1,92	2,14	3386,64	1,77	1,97	3887,73	1,64	1,83	4423,37
2,25	2,00	2,23	3463,61	1,84	2,06	3976,09	1,71	1,91	4523,90

2,30	2,08	2,33	3540,58	1,92	2,15	4064,45	1,78	1,99	4624,44
2,35	2,17	2,43	3617,35	2,00	2,24	4152,80	1,85	2,07	4724,97
2,40	2,26	2,53	3694,52	2,08	2,33	4241,16	1,93	2,16	4825,50
2,45	2,35	2,64	3771,49	2,17	2,43	4329,52	2,01	2,25	4926,03
2,50	2,44	2,74	3848,46	2,25	2,53	4417,88	2,09	2,34	5026,56
2,55	2,53	2,85	3925,43	2,34	2,63	4506,23	2,17	2,43	5127,09
2,60	2,63	2,96	4002,40	2,42	2,73	4594,59	2,25	2,52	5227,62
2,65	2,72	3,07	4079,37	2,51	2,83	4682,95	2,33	2,62	5328,15
2,70	2,82	3,18	4156,34	2,60	2,93	4771,31	2,41	2,72	5428,68
2,75	2,92	3,25	4233,31	2,70	3,04	4859,66	2,50	2,82	5529,22
2,80	3,02	3,42	4310,28	2,79	3,15	4948,02	2,59	2,92	5629,79
2,85	3,13	3,54	4387,24	2,89	3,26	5036,38	2,68	3,02	5730,28
2,90	3,23	3,66	4464,21	2,98	3,37	5124,74	2,77	3,12	5830,81
2,95	3,34	3,78	4541,18	3,08	3,49	5213,09	2,86	3,23	5931,34
3,00	3,45	3,91	4618,15	3,18	3,60	5301,45	2,95	3,34	6031,87

DN 1800 Y 2000 PÉRDIDAS DE CARGA

		DN 1800			DN 2000	
Velocidad	Pérdida de Pérdida de			Pérdida de	Pérdida de	
	carga k=0,03mm	carga k=0,01mm	Caudal	carga k=0,03mm	carga k=0,01mm	Caudal
m/s	m/km	m/km	I/s	m/km	m/km	I/s
0,30	0,04	0,04	763,41	0,03	0,03	942,28
0,35	0,05	0,05	890,64	0,04	0,04	1099,56
0,40	0,06	0,06	1017,88	0,05	0,06	1256,64
0,45	0,08	0,08	1145,11	0,07	0,07	1413,72
0,50	0,09	0,09	1272,35	0,08	0,08	1570,80
0,55	0,11	0,11	1399,58	0,10	0,10	1727,88
0,60	0,13	0,13	1526,82	0,11	0,12	1884,96
0,65	0,15	0,15	1654,05	0,13	0,14	2042,04
0,70	0,18	0,18	1781,29	0,15	0,16	2199,12
0,75	0,20	0,20	1908,52	0,17	0,18	2356,20
0,80	0,23	0,23	2035,76	0,19	0,20	2513,28
0,85	0,26	0,26	2162,99	0,21	0,23	2670,36
0,90	0,29	0,29	2290,23	0,23	0,25	2827,44
0,95	0,32	0,32	2417,46	0,26	0,28	2984,52
1,00	0,35	0,35	2544,70	0,29	0,31	3141,60
1,05	0,38	0,38	2671,93	0,32	0,34	3298,68
1,10	0,42	0,42	2799,17	0,34	0,37	3455,76
1,15	0,46	0,46	2926,40	0,37	0,40	3612,84
1,20	0,49	0,49	3053,64	0,40	0,44	3769,92
1,25	0,53	0,53	3180,87	0,44	0,47	3927,00
1,30	0,57	0,57	3308,10	0,47	0,51	4084,08
1,35	0,62	0,62	3435,34	0,50	0,55	4241,16
1,40	0,66	0,66	3562,57	0,54	0,59	4398,24
1,45	0,71	0,71	3689,81	0,58	0,63	4555,32
1,50	0,69	0,76	3817,04	0,62	0,67	4712,40
1,55	0,74	0,81	3944,28	0,65	0,72	4869,48
1,60	0,78	0,86	4071,51	0,69	0,76	5026,56
1,65	0,83	0,91	4198,75	0,74	0,81	5183,64
1,70	0,88	0,97	4325,98	0,78	0,85	5340,72
1,75	0,93	1,02	4453,22	0,82	0,90	5497,80
1,80	0,98	1,08	4580,45	0,87	0,95	5654,88
1,85	1,03	1,14	4707,69	0,91	1,00	5811,96
1,90	1,08	1,20	4834,92	0,96	1,06	5969,04
1,95	1,14	1,26	4962,16	1,01	1,11	6126,12
2,00	1,19	1,32	5089,39	1,06	1,17	6283,20
2,05	1,25	1,38	5216,63	1,11	1,23	6440,28
2,10	1,31	1,45	5343,86	1,16	1,29	6597,36
2,15	1,37	1,52	5471,10	1,21	1,35	6754,44
2,20	1,43	1,59	5598,33	1,27	1,41	6911,52
2,25	1,49	1,66	5725,57	1,32	1,47	7068,60

2,30	1,55	1,73	5852,80	1,38	1,53	7225,68
2,35	1,62	1,80	5980,04	1,43	1,60	7382,76
2,40	1,68	1,88	6107,27	1,49	1,67	7539,84
2,45	1,75	1,96	6234,51	1,55	1,73	7696,92
2,50	1,82	2,04	6361,74	1,61	1,80	7854,00
2,55	1,89	2,12	6488,97	1,67	1,87	8011,08
2,60	1,96	2,20	6616,21	1,74	1,95	8168,16
2,65	2,03	2,28	6743,44	1,80	2,02	8325,24
2,70	2,10	2,36	6870,68	1,87	2,09	8482,32
2,75	2,18	2,45	6997,91	1,93	2,17	8639,40
2,80	2,25	2,54	7125,15	2,00	2,25	8796,48
2,85	2,33	2,63	7252,38	2,07	2,33	8953,56
2,90	2,41	2,72	7379,62	2,14	2,41	9110,64
2,95	2,49	2,81	7506,85	2,21	2,49	9267,72
3,00	2,57	2,90	7634,09	2,28	2,57	9424,80

COMPORTAMIENTO A LAS CARGAS EXTERNAS

Se pueden clasificar los distintos tipos de cañeria en tres categorías, según su comportamiento a las cargas exteriores:

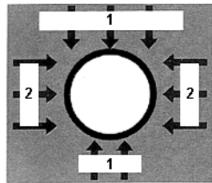
- rígidas,
- flexibles,
- semi-rígidas.

Las cañerias de hierro fundido dúctil se clasifican entre las semi rígidas y presentan una buena combinación entre resistencia a las cargas y la deformación, con lo que garantizan así una buena seguridad de funcionamiento a lo largo del tiempo.

Vea También:

- Sistema suelo-caño
- Casos de caños rígidos
- **◯** Casos de caños flexibles

SISTEMA SUELO-CAÑO


El comportamiento mecánico de un caño enterrado no es posible entender si no se considera el sistema suelo/caño.

En efecto, la interacción de las cañerias con el suelo que las rodea depende de la rigidez o de la flexibilidad de las mismas, lo que determina el tipo de instalación.

Se pueden clasificar las cañerias en tres categorías, según su resistencia a las cargas exteriores:

- caños rígidos,
- caños flexibles,
- caños semi-rígidos.

Suelo

- 1. Cargas exteriores
- 2. Reacción

CASOS DE CAÑOS RÍGIDOS

Ejemplo

Asbesto-cemento, hormigón pretensado.

Comportamiento

Los caños rígidos sólo admiten una ovalización mínima antes de romperse. Esta deformación resulta insuficiente para poner en juego las reacciones de apoyo lateral del relleno. Toda la carga vertical del suelo es soportada por el caño, lo que provoca fuertes tensiones de flexión en sus paredes.

- Critério de dimensionamiento

Por lo general, carga máxima de rotura.

Consecuencias

Los caños rígidos favorecen las concentraciones de carga en las generatrices inferior y superior. La eficacia del conjunto suelo/caño rígido depende en gran medida del ángulo de apoyo, o sea de la buena preparación del lecho de sostén o apoyo, especialmente cuando existen cargas de tránsito.

CASOS DE CAÑOS FLEXIBLES

Ejemplo

Plásticos, acero no revestido de cemento.

Comportamiento

Los caños flexibles admiten una importante deformación sin ruptura. De esta manera, la carga vertical del relleno sobre el caño es equilibrada por la reacciones de apoyo lateral del caño en el relleno que lo rodea.

Criterios de dimensionamiento

Ovalización máxima admisible o tensión de flexión máxima admisible.

Consecuencias

La estabilidad del sistema suelo/caño flexible depende directamente de la capacidad del relleno de generar una reacción pasiva de apoyo, es decir de su módulo de reacción (E'), y por consecuencia, de la calidad del relleno y de su compactación.

CASOS DE CAÑOS SEMI RÍGIDOS

Ejemplo

Hierro fundido dúctil.

Comportamiento

Los caños semi rígidos se ovalizan lo suficiente para que una parte de la carga vertical del relleno provoque el apoyo del suelo que lo cubre. De esta manera, los esfuerzos aplicados son las reacciones pasivas de apoyo del suelo y las tensiones de flexión interna en la pared del caño. Por lo tanto, la resistencia a la carga vertical queda repartida entre la resistencia propia del caño y la del relleno que lo rodea; dependiendo la contribuición de cada una de la relación de las rigideces del caño y del suelo.

- Criterios de dimensionamiento

Tensión de flexión máxima admisible (caso de los pequeños diámetros) u ovalización máxima admisible (caso de los grandes diámetros).

Consecuencias

Al repartir los esfuerzos entre caño y relleno, el sistema suelo/caño semi rígido ofrece una mayor seguridad en el caso de aumento en el tiempo de las solicitaciones mecánicas o de las alteraciones de las condiciones de apoyo.

CARACTERÍSTICAS MECÁNICAS DE LOS SUELOS

Los datos que se indican a continuación se refieren a valores adoptados para caracterizar los suelos. Dispensan mediciones reales efectuadas in situ o en laboratorio.

Vea También:

☑ Caracteristicas medias de los suelos comunes en la práctica

Clasificación de los suelos según ASTM / D 2487

▼ Valores medios del módulo de reacción E' de un relleno

CARACTERÍSTICAS MEDIAS DE LOS SUELOS COMUNES EN LA PRÁCTICA

Los valores indicados en las siguientes tablas son los que se suelen admitir para caracterizar los suelos. Permiten utilizar algunas fórmulas citadas para el cálculo en el presente catálogo.

	Seco/h	úmedo	Sumergido	
Naturaleza del terreno				
	grados	t/m ³	grados	t/m ³
Residuos rocosos	40°	2	35°	1,1
Gravas, arenas	35°	1,9	30°	1,1
Gravas, arenas, limos, arcillas	30°	2	25°	1,1
Limos/arcillas	25°	1,9	15°	1
Limos orgánicos/tierra vegetal/arcillas	15°	1,8	No hay características media	

Φ: Ángulo de tratamiento interno (en grados),

?: Masa volume mica (en t/m³).

CLASIFICACIÓN DE LOS SUELOS SEGÚN ASTM / D 2487

- GW grava bien calibrada, mezclas arena-gravosa, poco o nada de finos.
- GP grava sin calibrar, mezclas arena-gravosa, poco o nada de finos.
- GM grava limosa, mezclas limo-arena-grava sin calibrar.
- GC grava arcillosa, mezcla arcilla-arena-grava sin calibrar.
- SW arenas bien calibradas, arenas gravosas, poco o nada de finos.
- SP arenas sin calibrar, arenas gravosas, poco o nada de finos,
- SM arenas limosas, mezclas limo-arena sin calibrar.
- SC arenas arcillosas, mezclas arcilla-arena sin calibrar.
- ML limos no órganicos, y arenas muy finas limosas y arcillosas.
- CL arcillas no orgánicas de plasticidad pequeña y media.
- MH limos no orgánicos, suelos finos arenosos o limos elásticos.
- CH arcillas no orgánicas de alta plasticidad, arcillas grasas.

VALORES MEDIOS DEL MÓDULO DE REACCIÓN E' DE UN RELLENO (a)

Tipo de suelo utilizado para relleno		Grado de Cor	npactación (Pr	octor) (e)		
Descripción	Clasificación (b)	No compactado	Bajo < 85%	Médio 85% - 95%	Alto > 95%	
		MPa	MPa	MPa	MPa	
Suelos finos (LL > 50%) (c) plasticidad media a alta	CH MH CH-MH	Suelos que necesitan de estudos y medidas específica:				
Suelos finos (LL < 50%) plasticidad nula a media Material grueso < 25%	CL ML ML-CL CL-CH ML-MH	0,4	1,4	3	7	
Suelos finos (LL < 50%) plasticidad nula a media Material grueso > 25%	CL ML ML-CL CL-CH ML-MH	0,7	3	7	14	
Suelos con materiales gruesos y finos Material fino > 12%	GM GC SM SC (d)	1,4	7	14	20	
Suelos con materiales grueso y poco o nada de finos Material fino < 12%	GW GP SW SP (d)	1,7	,	14	20	
Roca triturada		7		20		

⁽a) conforme a las recomendaciones del Servicio de Reclamaciones de EUA, aplicables a los caños no rígidos,

⁽b) clasificación según ASTM/D 2487 (ver página anterior),

⁽c)LL = Límite líquido = límite de saturación de agua

⁽d) o cualquier suelo semejante que empiece con estos símbolos,

⁽e) grado Proctor según método D 689,AASHOT-99 (densidad seca máxima sobre muestra standard a 598.000 J/m3).

APERTURA DE LA ZANJA Y RELLENO

La ejecución de una zanja y su rellenado dependen de los siguientes parámetros:

- medio (urbano o rural),
- características de la tubería (material, tipo de junta y diámetro),
- naturaleza del terreno (con o sin agua),
- profundidad de colocación.

Las recomendaciones para la instalación que se indican a continuación son las que se suelen prescribir para las cañerias de hierro fundido dúctil.

Vea También:

- **Obras preparatorias**
- Maria Apertura de la Zanja
- M Anchura de la Zanja
- Profundidad de la zanja
- Maturaleza de los terrenos
- **Ejecución en taludes**
- Protección de las excavaciones
- Fondo de zanja
- Tipos de rellenos

OBRAS PREPARATORIAS

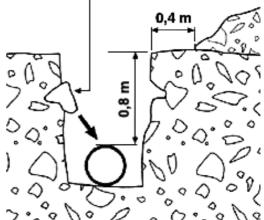
Después del estudio completo del entorno y acuerdos con los diversos concesionarios (telecomunicaciones, eletricidad...), el contratista materializa, en el terreno, el diseño y el perfil de la cañeria a instalar, de conformidad con el proyecto, y comprueba la concordancia entre las hipótesis del mismo y las condiciones de ejecución.

APERTURA DE LA ZANJA

En zonas de calzada, prever la rotura de la misma, con recortes prévios de los bordes de la zanja, para evitar la degradación de las partes colindantes. El ancho debe ser ligeramente superior al de la zanja. La excavación de la zanja se efectua generalmente con ayuda de una pala retroexcavadora, cuyas características deben ser adaptadas al diámetro del caño, al medio y a la profundidad de la excavación.

ANCHURA DE LA ZANJA

La anchura de la zanja es función del DN, de la naturaleza del terreno, de la profundidad de colocación y del método de sujección y compactación.

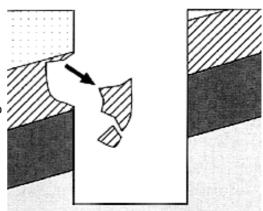

Durante la ejecución, se debe tener cuidado para:

- estabilizar las paredes de la zanja, mediante tablaestacado o enmaderado, o bien por taludes,
- eliminar los vacíos de los flancos de los taludes para evitar que caigan bloques de tierra o de roca,
- colocar el material removido, a una distancia de 0,4m del borde de la zanja.

PROFUNDIDAD DE LA ZANJA

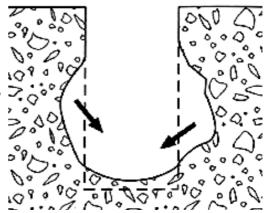
Salvo indicación contraria, la profundidad normal de las zanjas es la que resulta de una altura de tapada no inferior a 0,8m, a partir de la generatriz superior del caño.

A retirar antes de la instalación

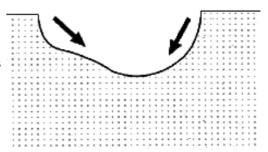


NATURALEZA DE LOS TERRENOS

Los terrenos pueden clasificarse en tres grandes categorías, en función de su cohesión:


Terrenos Rocosos

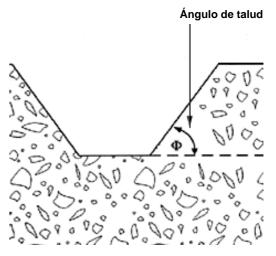
Poseen una cohesión muy grande, que complica el trabajo de excavación, pero que no excluye la posibilidad de desprendimientos. A veces presentan fisuras que pueden provocar caída de bloques enteros.


Terrenos Blandos

Son los más numerosos, presentan cierta cohesión que, durante las obras de excavación, les permite mantenerse algún tiempo. Esta cohesión puede variar muy rápidamente bajo los factores ya citados (llegada de agua, paso de maquinaria, etc.): son posibles los desprendimientos.

Terrenos Sueltos

Son terrenos desprovistos de cohesión, como arena seca, lodos o rellenos recientemente depositados. Se caen prácticamente en el acto. Cualquier obra en estos terrenos requiere procedimientos especiales.

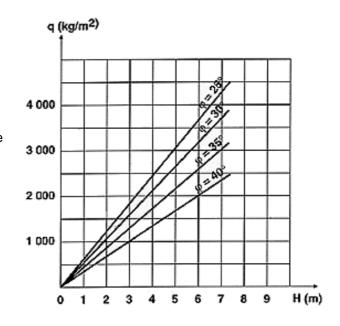

Es imprescindible protegerse contra cualquier riesgo de desprendimiento:

- Bien haciendo taludes,
- Bien protegiendo las paredes de la zanja.
- La adopción del tipo de precauciones referentes a las paredes de la zanja también depende del medio (urbano o rural) y de la profundidad de colocación.

EJECUCIÓN EN TALUDES

Pocas veces utilizada en el medio urbano, debido a las superficies que requiere. La realización de taludes consiste en dar a las paredes una inclinación denominada ángulo de talud, que debe aproximarse al ángulo de frotamiento interno del terreno. Este ángulo varía con la naturaleza de los terrenos hallados. Vea

Caracteristicas Mecánicas de los Suelos.


PROTECCIÓN DE LAS EXCAVACIONES

Las técnicas de protección de las excavaciones son numerosas y es importante estudiarlas y adaptarlas antes de comenzar las obras.

La protección debe realizarse en los casos previstos por la reglamentación vigente o, de manera general, cuando lo requiera la naturaleza del terreno.

■ Técnicas de protección más comunes

- tableros de madera hechos con elementos prefabricados,
- entibados de madera o metálicos,
- tablaestacas.

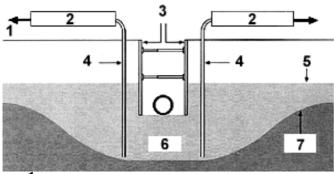
Cualquiera que sea el procedimiento utilizado, se deberá de tener en cuenta la presión del terreno. Los paneles instalados deberán ser capaces de resistir, en toda su altura, a un empuje dado por la fórmula:

$$q = 0.75 \ \Upsilon \ H \ tg^2 \left(\begin{array}{cc} \frac{\pi}{4} & -\frac{\varphi}{2} \end{array} \right)$$

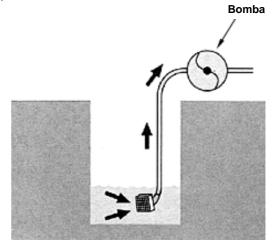
7: masa específica del terreno (en kg/m³) (aproximadamente igual a 2000 kg/m³)

: ángulo de rozamiento interno del terreno

q: empuje de los suelos (en kg/m²).

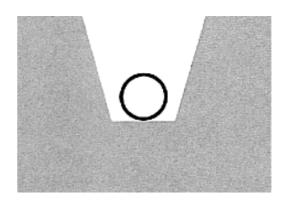

H: profundidad (m).

FONDO DE ZANJA

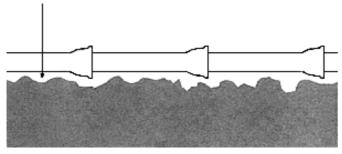

El fondo de la excavación debe nivelarse de conformidad con el perfil longitudinal de la cañeria y quedar libre de cualquier material rocoso o de mampostería. Comprobar que el apoyo del caño en el suelo éste regularmente distribuído en toda su longitud. En los casos de la junta mecánica (JM) y de la junta acerrojada externa (JTE), es necesario realizar nichos destinados a facilitar el montaje.

Presencia de agua:

La excavación debe empezar a ser hecha desde el nivel más bajo hacia el más alto, de manera de permitir la auto-evacuación del agua del fondo de la zanja. Cuando la excavación es realizada en un terreno saturado de agua (capa freática), puede ser necesario evacuar las aguas de la zanja por bombeo (directamente desde la zanja o en un pozo lateral).



- 1. Suelo
- 2. Bombeo
- 3. Protección de las excavaciones
- 4. Caño de aspiración
- 5. Nível estático
- 6. Zona secada
- 7. Nivel dinámico



LECHO DE ASIENTO

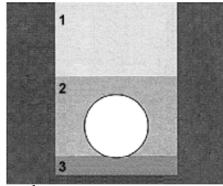
El fondo de la excavación constituye la zona de asiento del caño. Si el suelo existente es relativamente homogéneo, es posible colocar el caño en el fondo de la zanja como se acaba de describir.

Lecho de asiento: gravilla machacada

Es conveniente asegurarse del perfecto apoyo del caño, en especial para los grandes diámetros. Cuando el fondo de la zanja no se presta para la colocación directa, se debe ejecutar un lecho de asiento de grava o de arena cuyo espesor es del orden de los 10cm.

TIPOS DE RELLENOS

Véase la tabla Alturas de Tapada para detalles de los diferentes tipos de rellenos en función:


- del medio (carga de las tierras, carga de tránsito, calidad del material de relleno),
- del diámetro de la cañeria,
- de la naturaleza de los terrenos encontrados.

Zona de relleno alrededor del caño

Se distinguen:

- el relleno de sujección (resistencia a la ovalización únicamente en el caso de los grandes diámetros), realizado con material extraído durante la excavación o con material de préstamo,
- el relleno de protección (en el caso de terrenos de granulometría muy heterogénea), efectuado con tierra tamizada o arena; este relleno puede actuar como protección y sujeción.

Solo

- Relleno superior
 Relleno alrededor o
 LLecho de asiento Relleno alrededor del tubo

Zona de relleno superior

Por lo general se va llenando con la tierra sacada sin compactar (caso general), o con materiales de aporte compactados (por debajo de calzada).

ALTURAS DE TAPADA

Las alturas mínimas y máximas de tapada dependen tanto de las características del caño como del tipo de instalación.

Vea También:

Definiciones

Definición de los tipos de instalación

Definición de los tipos de suelo

Maria Alturas de tapada

Niveles de compactación

DEFINICIONES

Se pueden clasificar tres zonas en una instalación en zanja:

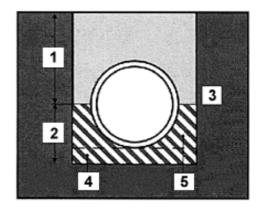
- zona de relleno (1),
- zona de relleno esmerado (2),
- suelo natural (3).

La zona de relleno (1) varía en función del lugar de la instalación (rural o urbano) teniéndose en consideración la estabilidad del pavimento de calles y autopistas.

La zona de relleno esmerado (2) condiciona la estabilidad y la protección de la cañeria.

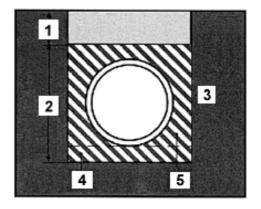
Su ejecución debe tener en cuenta las siguientes variables:

- las características de los caños (rígidos, semi-rígidos o flexibles),
- las cargas exteriores (altura de tapada, cargas de tránsito),
- el carácter rocoso y heterogenidad de los terrenos.


Normalmente la zona de relleno esmerado (2) está constituída por:

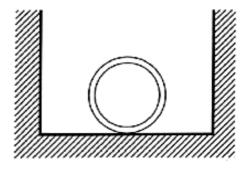
- lecho de asiento
- relleno

El relleno varía según el tipo de la cañeria. Para caños flexíbles, debe extenderse hasta 0,10cm por encima de la generatriz superior del caño, y para los caños rígidos y semi rígidos, podrá ser de la altura del diámetro superior de la cañeria.

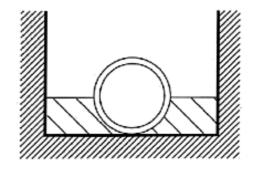

Caños Rígidos y Caños Semi-Rígidos

- 1. Relleno
- 2. Relleno esmerado
- 3. Suelo natural
- 4. Lecho de asiento
- 5. Relleno alrededor del tubo

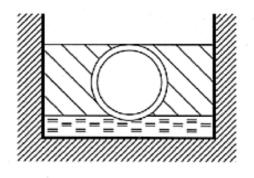
Caños Flexíbles


- 1. Relleno
- Relleno
 Suelo natural esmerado
- 4. Lecho de asiento
- 5. Relleno alrededor del tubo

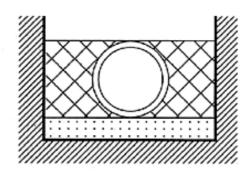
DEFINICIÓN DE LOS TIPOS DE INSTALACIÓN


La norma ANSI A 21.50 (AWWA C-150), define cinco tipos de instalación que se corresponden con los cuidados que se deben tener con el fondo del relleno de la zanja.

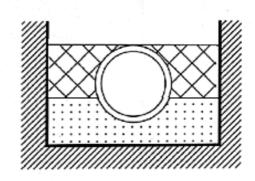
- Tipo 1
- Fondo de zanja plano (suelo de origen inalterado).
- Relleno no compactado.


Tipo 2

- Fondo de zanja plano (suelo de origen inalterado)
- Relleno ligeramente compactado, hasta la mitad del caño.


■ Tipo 3

- Caño instalado en zanja sobre tierra blanda , no compactada, con un espesor mínimo de 100mm.
- Relleno levemente compactado hasta la parte superior del caño.


Tipo 4

- Caño instalado en una zanja sobre un lecho de arena, grava o piedras trituradas, con espesor de 1/8 del diámetro del caño o como mínimo, de 100mm
- Relleno compactado hasta la parte superior del caño (aproximadamente 80% Standard Proctor, AASHOT-99).

- Tipo 5

- Caño asentado en zanja sobre lecho de material granular, hasta la mitad del caño
- Material granular o material seleccionado compactado hasta la parte superior del caño (aproximadamente 90% Standard Proctor, AASHOT- 99).
- Tierra suelta o material seleccionado, son definidos como suelo extraído de la própia zanja, sin piedras o materiales extraños.

DEFINICIÓN DE LOS TIPOS DE SUELO

La norma ISO 10803 define 6 grupos diferentes de suelo para el relleno, o sea suelos que son utilizados en las zanjas alrededor de los caños, compactados o no, para dar soporte a las cañerias. Estos grupos clasifican tambien los suelos de origen, así como los materiales importados. Son también usados para la clasificación de los suelos de las paredes de las zanjas.

Grupos de suelo	Descripción Sumária
А	Piedras con granulometría de 6mm a 40mm, incluyendo gran cantidad de material local como: piedra fragmentada, pedregullo, grava.
В	Suelos de granulometría gruesa, con pocos o nada de finos, sin partículas mayores de 40mm.
С	Suelos con granulometría gruesa, con finos, y suelos con granulometría fina, con media o ninguna plasticidad, con más de 25% de partículas gruesas, y límite líquido menor de 50%.
D	Suelos con granulometría fina, con media o ninguna plasticidad, menos de 25% de partículas gruesas, límite líquido menor de 50%.
E	Suelos con granulometría fina, con média y alta plasticidad, límite liquido mayor de 50%.
F	Suelos de origen orgánico.

ALTURAS DE TAPADA

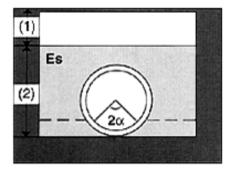
Las tablas siguientes indican las alturas de tapada máximas (sin carga de tránsito) y máximas y mínimas (con carga de tránsito) para caños clases K7 y K9.

Los valores que se indican son el resultado de cálculos efectuados para cada uno de los cinco tipos de apoyo definidos en la norma ANSI A 21.50 (AWWA C -150), combinados con los grupos de suelo A,B,C ,D y E de la misma ISO 10803, descriptos anteriormente.

Alturas máximas de tapada sin carga de tránsito:

- Grupo de Suelo A
- Grupo de Suelo B
- Grupo de Suelo C
- Grupo de Suelo D
- Grupo de Suelo E

Alturas máximas de tapada con carga de tránsito:


- Grupo de Suelo A
- Grupo de Suelo B
- Grupo de Suelo C
- Grupo de Suelo D
- Grupo de Suelo E

NIVELES DE COMPACTACIÓN

2α: ángulo de apoyo,

Es: módulo de reacción del relleno (2),

- (+) Zona de tapada o zona de relleno (1).
- (++) Unicamente para zona de relleno (1).

Grupo de suelo	No compactado C		Compact	ación controlada	Compactación controlada y verificada	
	Es	202	Es	2α⁄2	Es	202
	MPa	Grados	MPa	Grados	MPa	Grados
A (+)	0,7	60	2	90	5	120
B (+)	0,6	60	1,2	90	3	120
C (+)	0,5	60	1	90	2,5	120
D (+)	< 0,3	60	0,6	60	0,6	60
E (++)	0,7	-	2	-	5	-

TERRENOS INESTABLES

Las juntas elásticas con anillo de elastómero dan a las cañerias de hierro fundido dúctil una flexibilidad que constituye un elemento de seguridad para el paso por terrenos inestables, como zonas pantanosas, rellenos sanitarios etc.

En cada caso, es conveniente hacer una evaluación de la deformación potencial y tomar las precauciones necesarias, para minimizar el efecto del movimiento del suelo sobre la cañeria. Son aconsejables las mediciones in situ.

La experiencia demuestra que, cuando ocurre un movimiento del terreno, las cañerias deben poder acompañar las deformaciones impuestas por tal movimiento, en lugar de resistir las tensiones mecánicas (tensión axial y desviación angular), frecuentemente considerables. Las juntas de los caños **Saint-Gobain Canalização** forman zonas de tensión y flexión nula en su punto de deflexión angular.

En las depresiones extensas y uniformes, la junta da a la cañeria el comportamiento de una corriente flexible. Siendo así, los límites de deformación son fijados por la deflexión y el movimiento axial máximos admisibles de cada junta.

Vea También:

Desplazamiento admisible debido a la deflexión en las juntas

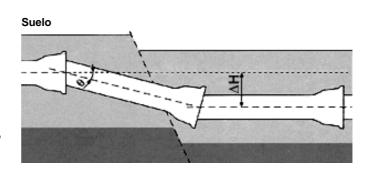
Comportamiento de un tramo

DESPLAZAMIENTO ADMISIBLE DEBIDO A LA DEFLEXIÓN EN LAS JUNTAS

Desplazamiento: $\Delta H = I tg \theta$

I: longitud del caño (m)

 θ : desvío angular admisible.


Ejemplo

Para H = 0.30m en un DN 200

 θ = 3° (4° admisible)

▲ I = 7 mm (20 mm admisible con la junta JGS)

No existe riesgo de desmontaje de la junta, pues el movimiento axial puede ser totalmente absorbido por la junta.

COMPORTAMIENTO DE UN TRAMO

Desplazamiento: $\Delta H = 2 I (tg \theta + tg2 \theta + tg3 \theta + ... + tg^n/4 \theta)$

Movimiento axial: $\Delta L \approx (L^2 + \frac{16}{3} \Delta H^2)^{1/2} - L$ (para muy pequeño)

I = longitud de un caño

L = longitud del tramo con desplazamiento

n = número de caños en el tramo desplazado $(n = L \div I)$

La cañeria se deforma acompañando el terreno hasta el límite del no desmontaje, en función del juego permitido por las juntas.

Observación: En casos de desplazamiento que ocasionan L muy grandes, una solución puede consistir en acerrojar las juntas y completar la longitud de este tramo con piezas colocadas en los límites entre las zonas estables e inestables.

ΔH

Ejemplo

DN 300, para H = 0.5 m y L = 300 m:

 $\theta_{\text{médio}} = 0.04^{\circ} \text{ (4° admissible)}$

 $\Delta L = 3 \text{ mm}$

Una sola junta puede soportar el movimiento axial debido a la curva hecha por el tramo de 300m desplazado de 0,5m de su eje.

CRUCE DE UN PUENTE

Cruzar un puente con una cañeria constituida por elementos con enchufes hace necesario resolver cuestiones referidas a:

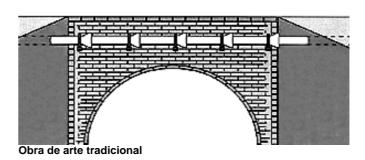
- Los soportes,
- La absorción de las dilataciones térmicas del puente y de la cañeria,
- El anclaje de los elementos sometidos a empujes hidráulicos,

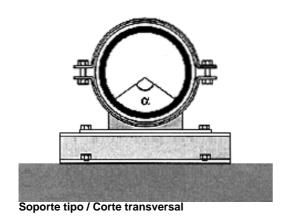
Existen dos principales formas de instalación en función del tipo de obra:

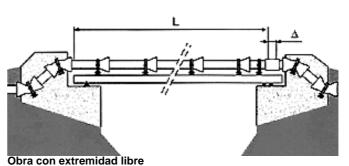
- cañeria fijada al puente,
- cañeria independiente del puente.

Los casos que se presentan a continuación corresponden a situaciones clásicas de cruce; se dan a título de ejemplo y no son representativos de la variedad de situaciones que se pueden encontrar.

Cada puente es un caso particular y debe ser estudiado de manera específica. Entre otras cosas, es conveniente comprobar previamente que el puente puede soportar los caños y que es posible fijar anclajes.


Vea También:

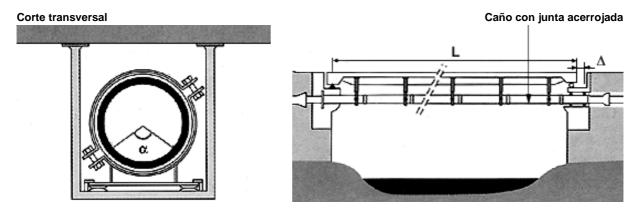

- M Cañeria solidaria a la obra de arte
- Cañeria independiente de la obra de arte


CAÑERIA SOLIDARIA A LA OBRA DE ARTE

Soportes

- un soporte por caño, colocado detrás del enchufe,
- una base de asiento (a = 120° es aconsejable).
- un collar de fijación,
- una protección de goma entre el caño y el soporte.

Dilataciones térmicas


Dilatación relativa: Cada collar debe ir apretado lo suficiente para constituir un punto fijo con el puente. Entre cada uno de los soportes solidarios al puente y a los caños, la junta elastica actúa como junta de dilatación al absorber la variación que corresponde al largo del caño.

Dilatación global (△L): La dilatación global en los extremos del puente se compensa, según su amplitud, por una simple junta con enchufe (en caso de que la obra sea en mampostería tradicional), o por una pieza que actúe como junta de dilatación (en caso del puente con apoyo libre).

Anclaje

Cada elemento sometido a un empuje hidráulico (codos, tes, válvulas...) debe estar sujeto por un sistema de anclaje. Los soportes deben dimensionarse para mantener la cañeria correctamente alineada y soportar los esfuerzos hidráulicos. Se recomienda prever un coeficiente de seguridad de dimensionamiento con el fin de compensar los esfuerzos hidráulicos debidos a un eventual defecto de alineamiento de la cañeria.

CAÑERIA INDEPENDIENTE DE LA OBRA DE ARTE

Soportes

Cada soporte es solidario con la cañeria, e independiente de los movimientos de la obra de arte. Existen varias técnicas, según la magnitud de las dilataciones: por deslizamiento, rodamiento sobre riel o rodillos:

Las fuerzas de deslizamiento de los soportes deben ser compatibles con el sistema de anclaje de la cañeria.

- Un soporte por caño, colocado detrás del enchufe,
- un asiento (a = 120° es aconsejable),
- un collar de fijación,
- una protección de goma entre el caño y el soporte.

Dilataciones térmicas

La cañeria se dilata o contrae independientemente de la obra de arte. Las juntas son acerrojadas y facilitan el montaje al mismo tiempo que participan en el reparto de la dilatación global de la tubería. Esta dilatación ΔL se transfiere al extremo libre de la tubería mediante una junta de dilatación de

suficiente capacidad.

Anclaje

Cada elemento sometido a un empuje hidráulico (codos, tes, válvulas...) debe estar sujeto por un sistema de anclaje.

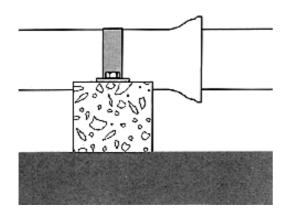
Los soportes deslizantes deben dimensionarse para mantener la cañeria correctamente alineada y soportar los efectos del empuje hidráulico. Se recomienda prever un coeficiente de seguridad de dimensionamiento, con el fin de compensar los esfuerzos hidráulicos debidos a un eventual defecto de alineamiento de la cañeria.

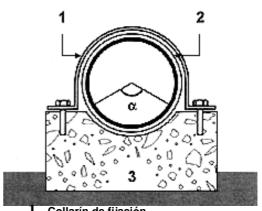
INSTALACIÓN AÉREA

Instalar en superficie una cañeria conformada con elementos de espiga y enchufe hace necesario resolver:

- El problema de los soportes,
- la absorción de las dilataciones térmicas,
- el anclaje de los elementos sometidos a los empujes hidráulicos.

Las cañerias de hierro fundido dúctil con enchufe, ofrecen una respuesta sencilla para la instalación en superficie.


Vea También:


Soportes

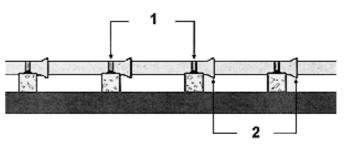
Dilatación térmica

Anclaje

SOPORTES

- 1. Collarín de fijación
- 2. Protección de elastomero3. Soporte de hormigón

Los párrafos siguientes proponen los principios generales de una solución clásica, mediante caños con enchufe:

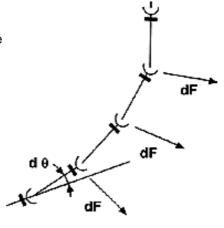

- un soporte por caño, colocado detrás del enchufe,
- una base de asiento (**α** = 120° es aconsejable),
- un collarín de fijación equipado con protección de elastómero.

DILATACIÓN TÉRMICA

Las cañerias de hierro fundido dúctil, tienen la ventaja de evitar la instalación de juntas de dilatación.

Punto fijo: Cada collarín debe estar lo suficientemente apretado, para constituir un punto fijo (prever un ancho adecuado de collarín).

Absorción de dilataciones: Entre cada soporte, la junta elástica sirve como compensador de dilatación porque absorbe la que corresponde a una longitud del caño.

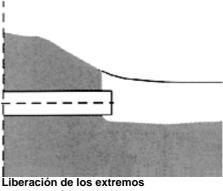

- 1. Collarines (puntos fijos)
- 2. Juntas (compensación de las dilataciones)

ANCLAJE

Cada elemento sometido a un empuje hidráulico (codos, tes, reducciones) debe estar estabilizado por un macizo de anclaje.

Se pueden realizar cambios de dirección de gran radio de curvatura por la simple desviación de las juntas (dentro de los límites de las tolerancias especificados), en cuyo caso se debe reforzar el anclaje de los soportes, después de haber valorado los empujes hidráulicos resultantes al nivel de las juntas desviadas.

Es necesario prever un coeficiente de seguridad de dimensionamiento, con el fin de compensar los esfuerzos hidráulicos debidos a un eventual mal alineamiento de la cañeria.


INSTALACIÓN CON CAÑO CAMISA

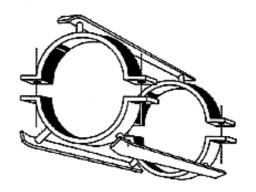
Instalar una cañeria con caño camisa consiste en:

- centrar y guiar cada elemento dentro del caño camisa,
- acerrojar los elementos entre sí para la tracción del tramo dentro del caño camisa.

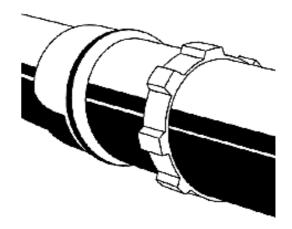
Las cañerias de hierro fundido dúctil con enchufes permiten sin dificultad el paso en estas obras: Antes de preparar los soportes de guiado:

- despejar los extremos del caño camisa,
- verificar su estado y su alineamiento,
- verificar que el espacio que ocupan los soportes de quiado es compatible con el diámetro interior del caño camisa.

y verificación del caño camisa

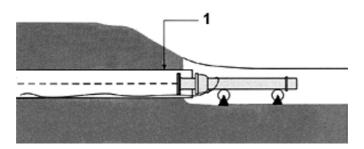

Vea También:

- Preparación de los soportes de guiado
- Colocación de la tubería dentro del caño camisa
- Ensayo de presión

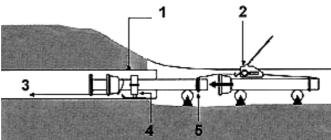

PREPARACIÓN DE LOS SOPORTES DE GUIADO

Según el diámetro del caño, del enchufe y, eventualmente de la contrabrida de acerrojado, se debe utilizar o confeccionar los collares - guías de soporte y centrado que mejor se adaptan a las necesidades de tracción de la cañeria dentro del caño camisa. La figura muestra un ejemplo de collar-guia.

Verificar que la fuerza de tracción no supera la resistencia de las juntas acerrojadas interna y externa.


	Fuerza de tra	Fuerza de tracción máxima		
DN	JTI	JTE		
	kN	kN		
80	12	-		
100	20	-		
150	44	-		
200	50	-		
250	78	-		
300	113	261		
350	-	288		
400	-	376		
450	-	477		
500	-	589		
600	-	763		

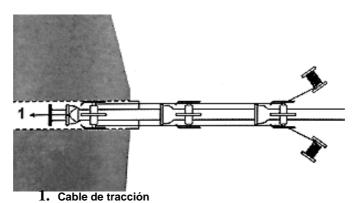
COLOCACIÓN DE LA TUBERÍA DENTRO DEL CAÑO CAMISA


Con Junta Acerrojada Interna y Junta Acerrojada Externa

- Pasar dentro del caño camisa un cable de tracción, enganchando el enchufe del primer caño.
- Fijar los collares de guiado y centrado detrás de cada enchufe.
- Traccionar el primer caño dentro del caño camisa.
- Introducir la espiga dentro del enchufe del segundo caño.
- Acerrojar la junta en el caso de JTE.

Una vez finalizada esta operación:

- pasar el segundo caño en el caño camisa.
- continuar la colocación de los caños con junta, hasta que el primer caño llegue al otro extremo del caño camisa.


- Caño camisa
 Tirfor
- 3. Cable de tracción
- 4. Collar-guia
- 5. Cordón de soldadura (solamente para caños JTE)

■ Con Junta JGS y Cable de Acerrojado

- Pasar por el caño camisa un cable de tracción enganchado al cable de acerrojado.
- Fijar detrás de cada enchufe los collares de guiado y centrado equipados de un sistema adecuado de apriete del cable.
- Posicionar el primer caño dentro del caño camisa.
- Fijar el cable de acerrojado y traccionar la cañeria.

- Caño camisa
 Cable de acerrojado
- 3. Carretes
- 4. Collar de guiado
- Introducir la espiga dentro del enchufe del segundo caño.
- Fijar el cable de acerrojado en el segundo soporte y continuar pasando la cañeria por tracción.
- Seguir colocando los caños hasta que el primer caño llegue al otro extremo del caño camisa.
- Desmontar el cable de tracción fijado en el primer caño; el cable de acerrojado permanece en su lugar.

ENSAYO DE PRESIÓN

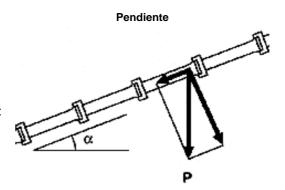
Después de la instalación de los caños dentro del caño camisa, es indispensable efectuar un ensayo de estanqueidad del tramo colocado.

INSTALACIÓN EN PENDIENTE

La instalación en pendiente de una cañeria de hierro fundido dúctil puede realizarse de dos maneras distintas:

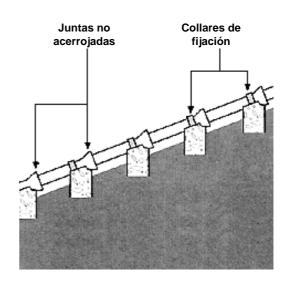
- colocando macizos de anclaje para cada caño,
- colocando un macizo de anclaje en la cabecera de un tramo acerrojado.

Vea También:


- M Anclaje caño por caño
- M Anclaje por tramo acerrojado
- Dimensión de un macizo de anclaje de un tramo enterrado

FUERZA AXIAL

En algunas pendientes, no es suficiente lo frotamiento entre la cañeria y el terreno para mantener la cañeria. Es necesario entonces equilibrar la componente axial de la gravedad utilizando macizos de anclaje o juntas acerrojadas, pudiéndose asociar ambas técnicas.


Conviene anclar una cañeria cuando la pendiente supera:

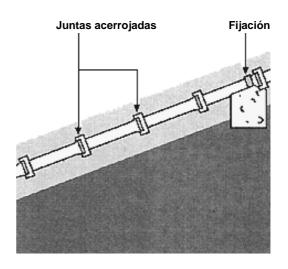
- el 20% para una cañeria aérea,
- el 25% para una cañeria enterrada.

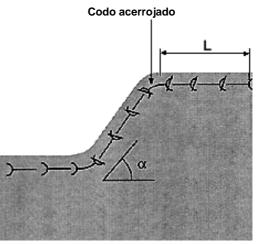
ANCLAJE CAÑO POR CAÑO

- Técnica indicada para la instalación aérea:
- Colocar un macizo de anclaje antes de cada enchufe del caño.
- Dirigir los enchufes hacia arriba con el fin de favorecer el apoyo en los macizos.
- Dejar un juego de 10mm entre la espiga y el fondo del enchufe, a fin de absorber las dilataciones (condiciones clásicas de instalación de las juntas elásticas).

ANCLAJE POR TRAMO ACERROJADO

■ Técnica indicada para assentamento enterrado


Técnica indicada para la instalación enterrada. Consiste en anclar un tramo de cañeria acerrojada:


- Mediante un macizo de anclaje colocado en la cabecera del tramo antes del enchufe del primer caño aguas arriba,
- mediante una longitud de acerrojado L adicional, instalada en la parte plana atrás de la curva anterior a la pendiente.

El esfuerzo axial máximo es soportado por la primera junta acerrojada aguas abajo del macizo de anclaje y es función de la pendiente así como de la longitud del tramo acerrojado. La longitud máxima admisible debe definirse, por lo tanto, por la resistencia máxima de la junta acerrojada.

Observación: Si la longitud de la pendiente es superior a la del tramo acerrojado admisible, es posible efectur la bajada en varios tramos independientes, anclando cada uno de ellos en su cabecera un macizo de anclaje. En este caso, no se acerrojan las juntas de los extremos de los tramos.

Consejo de ejecución: Es obligatorio realizar la instalación a partir del punto más alto, con el fin de que las juntas acerrojadas queden en posición de recibir esfuerzos axiales.

DIMENSIONAMIENTO DE UN MACIZO DE ANCLAJE DE UN TRAMO ENTERRADO

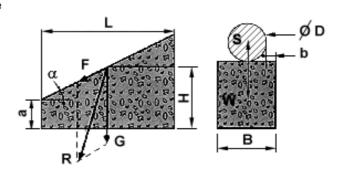
a: altura menor del macizo de anclaje

α: angulo del declive

F: fuerza de deslizamiento

L: longitud del macizo

b: 0,3 m mínimo


B: anchura del macizo

H: altura equivalente del macizo de anclajeW: peso del caño o del tramo lleno de agua

S: sección transversal

P_{max}: presión de servicio admisible de la junta acerrojada

f: coeficiente de fricción suelo/caño

Φ: ángulo de fricción interno (Ver Características Mecánicas de los suelos)

G: peso del macizo

7: masa específica del hormigón (22000 N/m³)

ø D: diámetro de la cañeria

R: fuerza resultante

Hipótesis

- R pasa por el tercio central de la base del macizo.
- No se tiene en cuenta el efecto de empuje hidráulico sobre el codo superior.

Dimensiones del macizo o bloque

$$L = \left(\frac{6 \, F \cos \alpha}{\gamma_B}\right)^{1/2}$$

H= 0,5 L tg \alpha + a (a = 0,10m mínimo)

donde:

 $F = W (sen \alpha - f cos \alpha)$

 $f = \alpha_2 tg (0.8 \Phi)$ con:

- α₂ = 1 caño revestido de zinc + pintura bituminosa
- $\alpha_2 = 2/3$ caño revestido con manga de polietileno

Condiciones suplementarias a verificar:

- resistencia de la junta acerrojada: W < P máx . S</p>
- no deslizamiento del macizo: F cos α ÷ G ≤ 0,9 tg Φ (si no, aumentar H).

ELASTÓMEROS

Los elastómeros utilizados en los aros de goma de las juntas de los caños y piezas especiales **Saint-Gobain Canalização** para el transporte de agua cruda, potable y riego suelen ser SBR (caucho sintético). Se seleccionan de manera rigurosa, según criterios que procuran la conservación de sus características físico-químicas con el tiempo.

Vea También:

Comportamiento en el tiempo

Caracteristicas físico-químicas

Especificaciones y control de calidad

COMPORTAMIENTO EN EL TIEMPO

Envejecimiento de los elastómeros

La finalidad de los elastómeros utilizados en los sistemas de unión es garantizar la estanqueidad de las juntas durante todo el tiempo en que la cañeria está en servicio. La experiencia adquirida por Saint-Gobain Canalização en el campo de las cañerias permite acompañar y medir la evolución en el tiempo de las propiedades de los elastómeros, para seleccionar los que presentan mejores rendimientos.

La evolución de las características mecánicas de los elastómeros al paso del tiempo se pueden definir con dos fenómenos:

- la deformación permanente,
- la elasticidad.

En el caso de las juntas con enchufe, la estanqueidad se logra por la presión del contacto entre el aro de goma de la junta y el metal. La deformación del elastómero, realizada en el momento del enchufado, es constante.

La elasticidad de los aros de goma es determinada por un método que consiste en medir la evolución en el tiempo de la fuerza necesaria para comprimir la probeta cuya deformación ha sido definida previamente.

El análisis de las muestras retiradas de las cañerias después de muchos años de trabajo confirma el excelente comportamiento de los aros de goma Saint-Gobain Canalização a lo largo del tiempo ya que conservan todas sus características físicas y mecánicas.

CARACTERISTICAS FÍSICO-QUÍMICAS

En el siguiente cuadro se indican las principales propiedades de los elastómeros utilizados por la **Saint-Gobain Canalização.**

SBR - Caucho sintético (Polímero de estireno-butadieno)

Utilización: agua cruda, agua tratada e irrigación

Gama de dureza (shore A)	30 - 90
Densidad (producto de base)	0,93
Resistencia al desgarro	buena y muy buena
Resistencia a la abrasión	excelente
Resistencia a la oxidación	buena
Temperatura máxima de utilización	60° C

NBR - Nitrílica

Utilización: líquidos agresivos y efluentes domésticos.

Gama de dureza (shore A)	40 - 95
Densidad (producto de base)	1,00
Resistencia al desgarro	media
Resistencia a la abrasión	buena
Resistencia a la deformación permanente por compresión	buena
Resistencia a la oxidación	buena
Temperatura máxima de utilización	60° C

■ EPDM - Polímero de etileno propileno

Utilización: líquidos a alta temperatura.

Gama de dureza (shore A)	40 - 90
Densidad (producto de base)	0,86
Resistencia al desgarro	buena
Resistencia a la abrasión	buena y excelente
Resistencia a la deformación permanente por compresión	buena
Resistencia a la oxidación	excelente
Temperatura máxima utilizada	90° C

Observación: Se deben tomar ciertas precauciones para el almacenamiento de los elastómeros.

Vea Almacenamiento de los aros de goma en Notas Técnicas - Asentamiento.

ESPECIFICACIONES Y CONTROL DE CALIDAD

Especificaciones

La caracterización de los elastómeros y los requisitos mínimos de aptitud al uso están normalizados conforme las normas NBR 7588 y ISO 4633.

- Control de Calidad

Debido a la importancia que los aros de goma representan para la estanqueidad de una red, **Saint-Gobain Canalização** ha establecido un procedimiento específico de garantia de la calidad aún más exigente, que comprende:

- la homologación del proveedor después de valorar su capacidad para suministrar con regularidad un producto conforme las exigencias técnicas,
- la calificación de la clase de elastómero,

 el seguimiento permanente de los resultados en materia de calidad entre los proveedores y, de forma paralela, la realización de ensayos en los laboratorios Saint-Gobain Canalização.

- Control con el agua potable

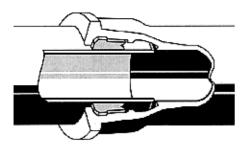
Los elastómeros utilizados en las juntas **Saint-Gobain Canalização** no alteran las características de potabilidad del agua.

JUNTA ELÁSTICA - JGS

La junta elástica es una junta automática. La estanqueidad se logra durante el montaje por compresión radial de un aro de goma. Sus características principales son:

- su facilidad y rapidez de instalación,
- su resistencia a altas presiones,
- la posibilidad de juego axial, y desviación angular.

Normas: NBR 13747 e ISO 4633.


La junta JGS, denominación adoptada por la Saint-Gobain Canalização, es identica a la JE2GS descripta en la norma NBR 13747.

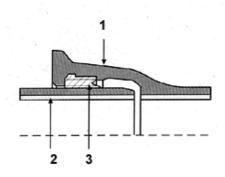
Ver Dimensiones junta elástica en Notas Técnicas..

Vea También:

- Principio
- **Descripción**
- Diámetros y Campo de utilización
- **⋈** Características
- Instalación y Normas

PRINCÍPIO

Se realiza la estanqueidad por la compresión radial del aro de goma, obtenida en el momento de montaje, por la simple introducción de la espiga en el enchufe.


DESCRIPCIÓN

El enchufe presenta por dentro:

- un alojamiento profundo con tope circular de enganche donde se aloja el aro de goma,
- un cuerpo macizo con chaflán de centrado.

- un talón de enganche,
- um plano inclinado de centragem.

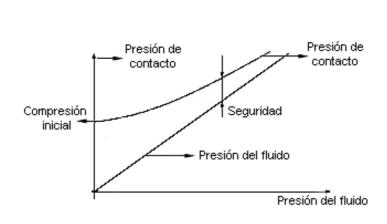
- 1. Bolsa
- 2. Ponta
- 3. Anel de junta em elastômero

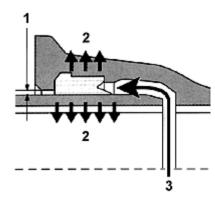
DIÂMETROS

Caños y piezas especiales: DN 80 a 1200

CAMPO DE UTILIZACIÓN

- Cañerias enterradas,
- Presiones altas,
- Instalación en capa freática.


Esta junta puede también utilizarse para la instalación aérea, gracias a su posibilidad de absorción de las dilataciónes, evitando de esta forma la instalación de una pieza especial para absorber la contracción o la dilatación de la cañeria.

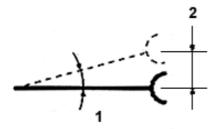

CARACTERÍSTICAS

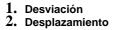
Comportamiento a la presión

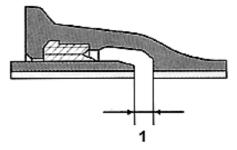
El diseño de la junta JGS, permite que la presión de contacto entre el aro de goma y el metal aumente cuando crece la presión interior, con lo que se obtiene una estanqueidad perfecta. Vea **Presiones máximas admisibles** en el **Notas Técnicas - Proyectos**. En prueba destructiva, ocurre la ruptura del tubo y el aro de goma permanece inalterado.

La junta JGS se caracteriza por una excelente resistencia a la presión externa: resiste a 0,3MPa (30 metros de columna de agua). Para presiones superiores, consultar a **Saint-Gobain Canalização**.

- 1. Huelga
- 2. Presión de contacto
- 3. Presión del fluído


Desviación angular y juego axial


La importante desviación angular que soporta la junta JGS, da una gran flexibilidad al diseño y a la instalación, permitiendo la eliminación de ciertos codos.


La junta JGS tolera un juego axial que le permite absorber la dilatación de pequeña amplitud.

La importancia de la desviación axial debe ser considerado como una seguridad, y no debe ser considerado para movimientos contínuos.

La desviación angular y el juego en longitud, que acepta la junta JGS garantizan un excelente comportamiento en caso de movimiento del terreno o de socavación.

1. Juelga

DN	Desviación admitida durante la instalación Desplazamiento	
	grados	cm
80 a 150	5°	52
200 a 300	4°	42
350 a 600	3°	32
700 a 800	2°	25
900 a 1200	1° 30'	19
1400 a 2000	1° 30'	21

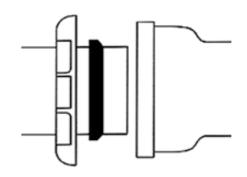
	Juelg	ga axial
DN	Alineado	Desviado
	mm	mm
80	30	22
100	30	18
150	30	18
200	30	20
250	30	15
300	30	10
350	38	15
400	38	15
450	38	12
500	38	10
600	30	0
700	30	15
800	30	8
900	30	8
1000	38	12
1200	38	7
1400	90	52
1500	100	52
1800	80	48
2000	80	25

INSTALACIÓN

Vea Montage de la Junta JGS en Notas Técnicas - Asentamiento

NORMAS

Esta junta cumple las normas NBR 13747 y ISO 4633.



JUNTA MECÁNICA - JM

La estanqueidad de la junta mecánica utilizada en piezas especiales con enchufes, se obtiene por la compresión axial de un aro de junta de elastómero mediante una contrabrida y bulones.

Sus principales características son:

- el montaje sin esfuerzo del enchufado,
- la posibilidad de la desviación angular.

Las juntas mecánicas se usan donde hay necesidad de instalar derivaciones en redes existentes o donde hay poco espacio para la introducción de equipos de montaje.

Desviación Angular

DN	Desviación admitida durante la instalación	Desplazamiento
	grados	cm
80 a 150	5°	52
200 a 300	4°	42
350 a 600	3°	32
700 a 800	2°	25
900 a 1200	1° 30'	19

Norma: NBR 7677.

Vea Dimensiones junta mecánica - JM en Notas Técnicas - Proyecto.

JUNTA ACERROJADA INTERNA - JTI

La junta acerrojada interna JTI es una junta elástica acerrojada que permite el montage de cañerias auto-ancladas. El acerrojamiento sucesivo transfiere los esfuerzos axiales para el terreno, posibilitando la eliminación de los macizos de anclaje. Adaptase a todos los enchufes modelo JGS.

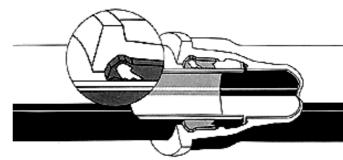
Vea Dimensiones de la junta acerrojada interna - JTI en Notas Técnicas - Proyecto.

Vea También:

Principio

Descripción

Diámetros y Campo de utilización


Instalación y Características

PRINCIPIO

El principio básico de acerrojamiento de las juntas, consiste en transferir los esfuerzos axiales de un elemento en la red hacia el siguiente, lo que impide el desmontaje del conjunto.

El anillo de goma JTI permite, gracias a la presencia de garras o insertos metálicos de fijación, trabar los enchufes sobre las espigas

lisas de los caños, no siendo necesario el empleo de macizos de anclaje.

Este tipo de acerrojamiento evita la necesidad de un cordon de soldadura en la espiga del caño, indispensable en la junta acerrojada JTE, pudiendo ser montado en cualquier espiga lisa de caños y en piezas especiales con enchufe JGS.

DESCRIPCIÓN

Las garras metálicas estan insertas en los aros de estanqueidad, fijandose sobre la espiga del caño cuando está bajo presión, asegurando el acerrojamiento.

El aro de goma tiene un labio, sobre la parte posterior, que protege las garras metálicas del contacto con el médio externo e interno.

DIÁMETROS

DN 80 a 300, en caños y piezas especiales JGS.

CAMPO DE UTILIZACIÓN

La utilización de la junta JTI está particularmente indicada cuando no se pueden construir macizos de anclaje, o en terrenos de baja resistencia mecánica, asi como en casos de cañerias instaladas en grandes declives o con caño camisa.

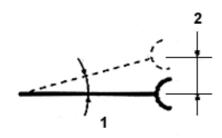
INSTALACIÓN

Es igual a la junta JGS. Vea Montage de la Junta JTI en Notas Técnicas - Asentamiento. .

CARACTERÍSTICAS

La junta JTI reune las ventajas de las cañerias con juntas elásticas y de las cañerias de juntas soldadas.

Resistencia a la presión


La estanqueidad de estas juntas corresponde a las cualidades reconocidas de las juntas elásticas.

Las presiones de trabajo admisibles (PMA) son las siguientes:

Caños de clase K9

- DN 80 a 150: 2,5 MPa.
- DN 200 a 300: 1,6 MPa.

Desviación angular

- 1. Desviación
- 2. Desplazamiento

Caños clase K7

- DN 150: 1,6 MPa
- DN 200 a 300: 1,0 MPa

DN	Desviación admitida durante la instalación	Desplazamiento
	grados	cm
80 a 150	5°	52
200 a 300	4°	42

Desmontaje

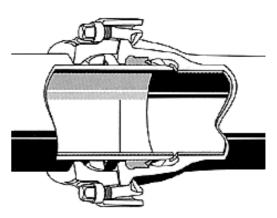
La junta JTI no es desmontable despues de que la cañeria está bajo presión. Para desmontaje de la junta JTI consultar la Saint-Gobain Canalização.

JUNTA ACERROJADA EXTERNA - JTE

La junta acerrojada externa JTE es una junta elástica que permite el montaje de cañerias autoportantes.

El acerrojado tiene como función repartir los empujes axiales y eliminar la construcción de los macizos de anclaje.

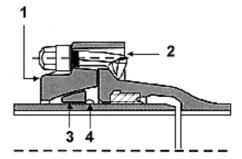
Vea **Dimensiones junta acerrojada externa** en **Notas Técnicas.**


Vea También:

Princípio

Descripción

Diámetros y Campo de utilización


Instalación y Características

PRINCIPIO

El principio básico del acerrojado de las juntas consiste en transferir los esfuerzos axiales de un elemento de la cañeria para el siguiente, sin permitir el desenchufe (caño/piezas especiales).

Las juntas acerrojadas permiten repartir en uno o varios caños los empujes axiales que aparecen en determinados puntos (codos, tes, reducciones, bridas ciegas...), evitando la realización de macizos de anclaje.

Junta JTE

- 1. Contrabrida
- 2. Bulón
- 3. Anillo metálico
- 4. Cordón de soldadura

DESCRIPCIÓN

La estanqueidad se consigue mediante un aro de goma JGS.

El traslado de los esfuerzos axiales se realiza mediante un dispositivo mecánico independiente del sistema de estanqueidad que resulta de:

- un cordon de soldadura realizado en fábrica y situado en la espiga del caño,
- una arandela metalica, monobloque o segmentada según los diámetros, de perfíl exterior esférico, que se apoya en el cordón de soldadura.
- una contra-brida especial (diferente de la de junta mecánica) que realiza el bloqueo de la arandela metálica,
- bulones y anillo metálico en hierro dúctil.

DIÁMETROS

Caños y piezas especiales: DN 300 a 1200.

Obs.: los caños com junta JTE deben ser K9.

CAMPO DE UTILIZACIÓN

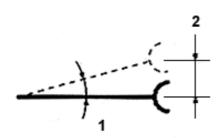
La utilización de las juntas acerrojadas es indicada para casos en que exista limitación de espacio para la construcción de macizos de anclaje, debido a su volúmen o a terrenos de poca cohesión. Siendo indicadas tambien para la instalacion en terrenos con declive encima del 25% o cruces aereos.

INSTALACIÓN

Vea Montagem de la Junta - Jte en Notas Técnicas - Asentamiento.

Carasterísticas

La junta JTE reune las ventajas de las cañerias con juntas elásticas y de las cañerias de juntas soldadas.


Estanqueidad

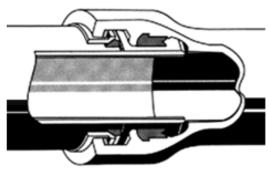
La estanqueidad de las juntas se corresponde con las cualidades reconocidas de las juntas JGS.

Presión

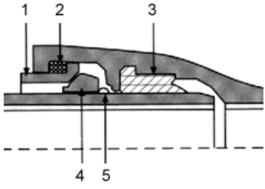
Vea Presiones de Servício Admisibles.

Desviación angular

DN	Desviación admitida durante la instalación	Desplazamiento
	grados	cm
300	4°	42
350 a 600	3°	32
700 y 800	2°	25
900 a 1200	1° 30'	19


- 1. Desviación
- 2. Desplazamiento

JUNTA PAMLOCK - JPK


La Junta Pamlock (JPK) está equipada con un sistema de acerrojado particular, especialmente desarrollado para los grandes diámetros. La originalidad de este sistema se basa en el uso de granalla, permitiendo el acerrojado sin el uso de bulones.

La utilización de juntas acerrojadas se basa en el principio de la distribución de los esfuerzos axiales a lo largo de la cañería, eliminando la necesidad de construcción de los macizos de anclaje.

Utilización: DN > 1400

Las juntas acerrojadas resisten a los esfuerzos axiales, provocados por el empuje que provocan los cambios de dirección (curvas, tes, reducciones, brida ciega, etc.), no impidiendo el desmontaje de los elementos de la cañería.

En la junta acerrojada JPK:

- La estanqueidad del sistema es asegurada por el anillo de elastómero de la junta JGS.
- El conjunto de acerrojado es compuesto de:
- Un cordón de soldadura realizado en el caño en la fábrica:
- Un anillo de acerrojado en segmentos, unido por elementos de elastómero;
- Un anillo conformador de acero especial;
- Granalla.

- 1. Anillo conformador
- 2. Granalla
- 3. Anillo de elastómero
- 4. Anillo metálico
- 5. Cordón de soldadura

Este conjunto transmite los esfuerzos axiales a través de la granalla introducida en el alojamiento situado entre el anillo conformador y el enchufe de los caños.

A través de un sistema de vibración, la granalla es introducida en el alojamiento existente entre el anillo conformador y el enchufe del caño, asegurando la distribución uniforme de los esfuerzos axiales en toda la superficie interna del enchufe. Este sistema no impide la continuidad del montaje de los elementos de la cañería.

Durante los testeos hidrostáticos, los movimientos eventuales de la cañería también son limitados por la compresión residual de la granalla.

Gama: DN 1400 a 2000

Dominio de aplicación

La utilización de la junta Pamlock es indicada donde hay dificultad para construir macizos de anclaje, sea por el volumen ocupado, por las condiciones del suelo o por su elevado costo.

Performance

La junta Pamlock acumula las ventajas de las cañerías con juntas flexibles.

Estanqueidad

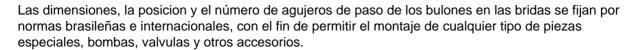
La estanqueidad de esta junta se basa en las reconocidas cualidades de la junta JGS.

Desviación Angular

DN 1400 a 1600: 1° o 14 cm de diferencia en el extremo; DN 1800 y 2000: 0,5° o 7 cm de diferencia en el extremo;

Montaje

Para el montaje de la junta Pamlock, solicitar Informativo Técnico.


JUNTA CON BRIDAS

La junta con bridas está constituida por dos bridas, una arandela de junta de elastómero y bulones cuyo número y dimensiones dependen del PN y del DN. La estanqueidad es asegurada por la compresión axial de la arandela, obtenida por el apriete de los bulones. Sus características principales son:

- la precisión del ensamblaje,
- y la posibilidad del montaje y desmontaje en línea.

La estanqueidad es función directamente:

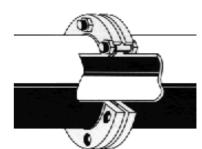
- del torque de apriete de los bulones,
- del diseño de la arandela de junta.

Vea en Notas Técnicas - Proyecto:

- Dimensiones de la Junta con Bridas PN 10
- Dimensiones de la Junta con Bridas PN 16
- Dimensiones de la Junta con Bridas PN 25

Vea También:

- Tipos de bridas
- Campo de utilización
- M Características
- Instalación y Normas


TIPOS DE BRIDAS

En el caso de piezas fundidas, las bridas forman parte integral de las piezas.

En el caso en que las bridas serán montadas posteriormente, estas son soldadas, hasta un DN 600, o roscadas, en los DN 700 y superiores.

Arandelas de junta de elastómero

Las arandelas de junta de elastómero, son de SBR (caucho sintético), para las bridas clase PN 10, y en amianto grafitado, para las bridas clase PN 16 y PN 25.

CAMPO DE UTILIZACIÓN

Los caños y piezas especiales con bridas suelen equipar las instalaciones no enterradas y los montajes en las cámaras de válvulas.

La precisión de ensamblaje de esta junta, asi como su posibilidad de desmontaje, la hacen eficaz para el caso de piezas en instalaciones no enterradas o en:

- estaciones de bombeo,
- cámaras de válvulas,
- galerías técnicas,
- reservorios.

CARACTERÍSTICAS

- Resistencia a la presión

La resistencia a la presión de una pieza con bridas se caracteriza por su PN. En ningún caso, un caño o una pieza especial con bridas en servicio deben utilizarse a una presión máxima de trabajo superior a la presión que corresponde a su PN.

INSTALACIÓN

Vea Montage de la Junta con Bridas en Notas Técnicas - Asentamiento.

NORMAS

NBR 7560: Caños de hierro fundido dúctil centrifugado con bridas roscadas.

ISO 2531: Caños, piezas especiales y piezas especiales de hierro fundido dúctil para cañerias con presión.

EMPUJES HIDRÁULICOS

Aparecen fuerzas de empuje hidráulico en una cañeria bajo presión:

- en cada cambio de dirección (codos, tes),
- en cada cambio de diámetro (reducciones),
- en cada extremidad (bridas ciegas).

Estas fuerzas locales de empuje deben equilibrarse con el fin de evitar que la junta se desenchufe, ya sea utilizando juntas acerrojadas, o construyendo macizos de hormigón.

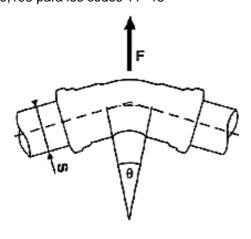
Estas fuerzas se pueden calcular con la fórmula general:

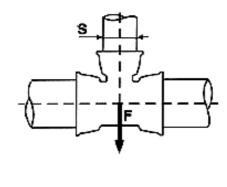
F = K.P.S

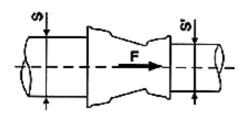
F: fuerza de empuje (en N)

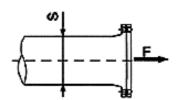
P: presión interior máxima (presión de prueba en obra) (Pa)

S: sección transversal (interior para las juntas con bridas, exterior para todos los restantes tipos) (m²)


K: coeficiente, función de la geometría del elemento de cañeria en cuestión.


Bridas ciegas, tapones, tes K = 1


Reducciones: K = 1 - S' / S (siendo S' la menor)


Curvas de ángulo θ : $K = 2 \operatorname{sen} (\theta \div 2)$

K = 1,414 para los codos 90° K = 0,765 para los codos 45° K = 0,390 para los codos 22° 30' K = 0,196 para los codos 11° 15'

El cuadro que sigue indica las fuerzas de empuje para una presión de 0,1MPa (Para presiones diferentes, multiplicar por el valor en MPa de la presión de prueba en la obra).

	Empuje F en daN para una pressión de 0,1 MPa				
DN	Bridas ciegas, tapones, tes	Codos 90°	Codos 45°	Codos 22° 30'	Codos 11° 15'
80	75	106	58	29	15
100	109	154	84	43	21
150	227	319	173	89	44
200	387	547	296	151	76
250	590	833	451	230	116
300	835	1180	638	326	164
350	1122	1587	859	438	220
400	1445	2044	1106	564	283
450	1809	2558	1384	706	355
500	2223	3142	1700	867	436
600	3167	4477	2422	1235	621
700	4278	-	3272	1668	839
800	5568	-	4260	2172	1092
900	7014	-	5364	2736	1375
1000	8626	-	6599	3365	1691
1200	12370	-	9463	4825	2425

MACIZOS (BLOQUES)

La utilización de macizos de anclaje es la técnica más frecuentemente utilizada para soportar los esfuerzos de empuje hidráulico de una cañeria con enchufe bajo presión.

Vea También:

Principio

Dimensionamiento (casos normales)

⋈ Recomendaciones

PRINCIPIO

Distintos tipos de macizos de anclaje pueden ser colocados según la configuración de la conducción, la resistencia y la naturaleza del suelo, la presencia o ausencia de capa freática. .

El macizo reacciona a los esfuerzos de un empuje hidráulico de dos maneras:

- por el frotamiento entre el bloque y el terreno,
- por la reacción de apoyo en las paredes de la zanja.

En la práctica, los macizos de anclaje se calculan teniendo en cuenta las fuerzas de frotamiento y la resistencia del apoyo en el terreno.

Cuando existen restricciones o cuando el mal comportamiento de los terrenos imposibilita la construcción de macizos de anclaje, se puede utilizar la técnica de acerrojado de las juntas. Vea **Acerrojado.**

DIMENSIONAMIENTO (CASOS NORMALES)

Los volúmenes del macizo de anclaje que se proponen en las tablas siguientes, han sido calculados teniendo en cuenta tanto el frotamiento en el suelo como la reacción de apoyo en el terreno, considerando características de suelos normales. Cuando, posteriormente, se deban realizar excavaciones en la proximidad inmediata de los macizos de apoyo, se deberá reducir la presión en la cañeria durante las obras. Las hipótesis de cálculo se indican a continuación. En todos los otros casos, es necesário hacer los cálculos.

■ Fuerzas actuantes (bloques de apoyo)

F: empuje hidráulico

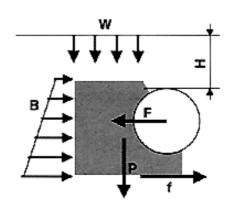
P: peso del bloque

W: peso de las tierras

B: reacción de apoyo en la pared de la zanja

f: frotamiento en el suelo

M: momento de vuelco


Terreno

Φ: ángulo de fricción interna del terreno

0: resistencia admisible del terreno en la pared vertical

H: altura de tapada: 1,20m

7: masa volumétrica

Características mecánicas:

tabla 1:

 $\Phi = 40^{\circ}$

σ≈ 1 daN/cm²

 $\gamma = 2 \text{ t/m}^3$

(terreno de resistencia mecánica bueno*)

tabla 2:

 $\Phi = 30^{\circ}$

σ≈ 0,6 daN/cm²

 $\gamma = 2 \text{ t/m}^3$

(terrero de comportamiento mecánico medio*)

Vea tabla 1 y tabla 2.

TABLA 1

Angulo de fricción interna: = 40° Resistencia: $\sigma = 1$ daN / cm² Masa volumétrica: $\gamma = 2$ t/m³ Altura de tapada: H = 1,2 m

Sin napa freática.

		Terreno de buena resistencia mecánica									
DN	Presión de prueba	Codo 11° 15 I × h/V	Codo 22° 30 I × h/V	Codo 45° I × h/V	Codo 90° I × h/V	Brida ciega I × h/V					
	MPa	m × m/m ³	m × m/m ³	m × m/m ³	m × m/m ³	m × m/m ³					
	1,0	0,10×0,18/0,01	0,17×0,18/0,02	0,21×0,28/0,04	0,38×0,28/0,06	0,28×0,28/0,05					
80	1,6	0,13×0,18/0,01	0,18×0,28/0,03	0,33×0,28/0,05	0,59×0,28/0,11	0,43×0,28/0,07					
	2,5	0,4×0,28/0,02	0,27×0,28/0,05	0,51×0,28/0,09	0,87×0,28/0,24	0,64×0,28/0,13					
	1,0	0,11×0,20/0,01	0,21×0,20/0,02	0,29×0,30/0,06	0,51 x0,30/0,10	0,37×0,30/0,07					
100	1,6	0,17×0,20/0,02	0,24×0,30/0,04	0,45×0,30/0,08	0,77×0,30/0,20	0,57×0,30/0,11					
	2,5	0,19×0,30/0,03	0,36×0,30/0,06	0,67×0,30/0,15	1,14×0,30/0,43	0,85×0,30/0,24					
	1,0	0,18×0,25/0,03	0,26×0,35/0,06	0,48×0,35/0,12	0,83×0,35/0,27	0,61×0,35/0,16					
150	1,6	0,28×0,25/0,04	0,40×0,35/0,09	0,73×0,35/0,21	1,04×0,45/0,54	0,93×0,35/0,34					
	2,5	0,32×0,35/0,08	0,60×0,35/0,16	1,08×0,35/0,46	1,50×0,45/1,12	1,13×0,45/0,63					
	1,0	0,24×0,30/0,05	0,37×0,40/0,12	1,68×0,40/0,24	0,98×0,50/0,54	0,86×0,40/0,33					
200	1,6	0,30×0,40/0,09	0,56×0,40/0,19	0,87×0,50/0,42	1,46×0,50/1,17	1,09×0,50/0,66					
	2,5	0,45×0,40/0,14	0,84×0,40/0,32	1,27×0,50/0,89	1,84×0,60/2,24	1,58×0,50/1,37					
	1,0	0,31×0,35/0,08	0,48×0,45/0,20	0,75×0,55/0,35	1,28×0,55/0,99	0,95×0,55/0,55					
250	1,6	0,39×0,45/0,16	0,73×0,45/0,32	1,13×0,55/0,78	1,67×0,65/2,00	1,41×0,55/1,21					
	2,5	0,59×0,45/0,24	0,93×0,55/0,53	1,63×0,55/1,61	2,36×0,65/3,98	1,81×0,65/2,34					
	1,0	0,37×0,40/0,12	0,59×0,50/0,28	0,93×0,60/0,58	1,41×0,70/1,53	1,17×0,60/0,91					
300	1,6	0,48×0,50/0,24	0,78×0,60/0,41	1,39×0,60/1,27	2,04×0,70/3,22	1,56×0,70/1,87					
	2,5	0,63×0,60/0,27	1,15×0,60/0,87	1,79×0,70/2,48	2,64×0,80/6,14	2,04×0,80/3,65					
	1,0	0,43×0,45/0,18	0,61×0,65/0,27	1,11×0,65/0,88	1,67×0.75/2,30	1,26×0,75/1,31					
350	1,6	0,57×0,55/0,35	0,93×0,65/0,62	1,49×0,75/1,83	2,23×0,85/4,66	1,84×0,75/2,80					
	2,5	0,75×0,65/0,41	1,23×0,75/1,26	1,96×0,85/3,61	2,76×1,05/8,83	2,26×0,95/5,34					
	1,0	0,49×0,50/0,25	0,71×0,70/0,39	1,17×0,80/1,20	1,79×0,90/3,18	1,46×0,80/1,87					
400	1,6	0,65×0,60/0,49	1,07×0,70/0,89	1,60×0,90/2,54	2,42×1,00/6,45	1,97×0,90/3,86					
	2,5	0,87×0,70/0,59	1,43×0,80/1,80	2,13×1,00/5,02	2,94×1,30/12,33	2,48×1,10/7,44					

TABLA 2

Angulo de fricción interna: = 30° Resistencia: $\sigma = 0.6$ daN / cm² Masa volumétrica: $\tau = 2$ t/m³ Altura de tapada: $\tau = 1.2$ m

Sin napa freática.

		Terreno de resistencia mecánica media									
DN	Presión de prueba	Codo 11° 15 I × h/V	Codo 22° 30 I × h/V	Codo 45° I × h/V	Codo 90° I × h/V	Brida ciegao I × h/V					
	MPa	m × m/m ³	m × m/m ³	m × m/m ³	m × m/m ³	m × m/m ³					
	1,0	0,13×0,18/0,01	0,17×0,28/0,02	0,32×0,28/0,04	0,56×0,28/0,10	0,41×0,28/0,06					
80	1,6	0,14×0,28/0,02	0,26×0,28/0,04	0,49×0,28/0,08	0,85×0,28/0,23	0,63×0,28/0,13					
	2,5	0,21×0,28/0,03	0,40×0,28/0,05	0,74×0,28/0,17	1,24×0,28/0,48	0,93×0,28/0,27					
	1,0	0,17×0,20/0,02	0,23×0,30/0,04	0,43×0,30/0,07	0,74×0,30/0,19	0,54×0,30/0,10					
100	1,6	0,18×0,30/0,03	0,35×0,30/0,05	0,65×0,30/0,15	1,11×0,30/0,41	0,83×0,30/0,23					
	2,5	0,28×0,30/0,05	0,53×0,30/0,10	0,96×0,30/0,31	1,30×0,40/0,75	1,21×0,30/0,48					
	1,0	0,26×0,25/0,04	0,38×0,35/0,08	0,70×0,35/0,19	0,99×0,45/0,49	0,89×0,35/0,31					
150	1,6	0,31×0,35/0,06	0,59×0,35/0,14	1,06×0,35/0,43	1,46×0,45/1,06	1,10×0,45/0,60					
	2,5	0,47×0,35/0,10	0,87×0,35/0,30	1,27×0,45/0,81	2,28×0,45/2,12	1,58×0,45/1,24					
	1,0	0,29×0,40/0,07	0,54×0,40/0,14	0,83×0,50/0,38	1,39×0,50/1,07	1,05×0,50/0,61					
200	1,6	0,44×0,40/0,12	0,82×0,40/0,30	1,24×0,50/0,85	1,79×0,60/2,12	1,54×0,50/1,30					
	2,5	0,66×0,40/0,20	1,02×0,50/0,58	1,77×0,50/1,73	2,51×0,60/4,15	1,93×0,60/2,47					
	1,0	0,37×0,45/0,12	0,70×0,45/0,25	1,08×0,55/0,71	1,60×0,65/1,83	1,35×0,55/1,11					
250	1,6	0,57×0,45/0,19	0,91×0,55/0,50	1,42×0,65/1,45	2,10×0,75/3,66	1,76×0,65/2,22					
	2,5	0,74×0,55/0,33	1,32×0,55/1,06	2,02×0,65/2,92	2,72×0,85/6,91	2,27×0,75/4,24					
	1,0	0,46×0,50/0,19	0,75×0,60/0,37	1,32×0,60/1,16	1,95×0,70/2,94	1,49×0,70/1,71					
300	1,6	0,61×0,60/0,25	1,12×0,60/0,83	1,75×0,70/2,36	2,40×0,90/5,71	1,98×0,80/3,46					
	2,5	0,91×0,60/0,55	1,46×0,70/1,64	2,27×0,80/4,53	3,12×1,00/10,73	2,58×0,90/6,61					
	1,0	0,54×0,55/0,27	0,89×0,65/0,57	1,42×0,75/1,67	2,13×0,85/4,25	1,76×0,75/2,56					
350	1,6	0,73x0,65/0,39	1,20×0,75/1,20	1,91×0,85/3,42	2,69×1,05/8,33	2,20×0,95/5,05					
	2,5	1,08×0,65/0,84	1,73×0,75/2,46	2,51×0,95/6,58	3,25×1,35/15,73	2,88×1,05/9,61					
	1,0	0,62×0,60/0,38	0,94×0,80/0,78	1,53×0,90/2,32	2,31×1,00/5,89	1,89×0,90/3,53					
400	1,6	0,85×0,70/0,56	1,39×0,80/1,71	2,08×1,00/4,75	2,85×1,30/11,63	2,41×1,10/7,03					
	2,5	1,14×0,80/1,15	1,85×0,90/3,39	2,63×1,20/9,12	3,63×1,50/21,79	2,96×1,40/13,49					

Ausencia de napa freática.

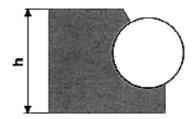
* Vea Características Mecánicas de los Suelos

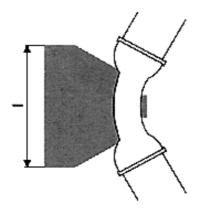
Concreto

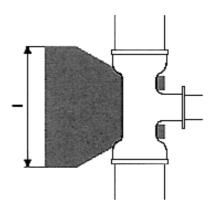
Masa volumétrica: 2,3 t/m³

Cañeria

DN 100 a DN 400


Presión de prueba: 1,0, 1,6 e 2,5 MPa.


Ejemplo


Codo 22° 30' DN 250 Presión de prueba: 1,0 MPa Altura de tapada: 1,2 m

Terreno arcilloso: $\Phi = 30^{\circ} \Upsilon = 2 \text{ t/m}^3$

La tabla 2 nos da: $l \times h = 0.70 \text{ m} \times 0.45 \text{ m}$ $V = 0.25 \text{ m}^3$

CONSEJOS DE EJECUCIÓN

Es importante que el concreto sea vertido directamente en el terreno y tenga una resistencia mecánica suficiente.

En el momento de diseñar los macizos, no se debe olvidar que las juntas han de estar libres, con el fin de permitir su posterior inspección durante la prueba hidráulica.

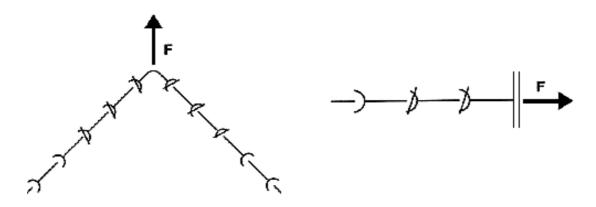
ACERROJADO

El acerrojado de los caños y juntas con enchufe es una técnica alternativa a los macizos de hormigón para resistir los esfuerzos de empujes hidráulicos y se utilizan especialmente cuando existen limitaciones de ocupación del terreno (área urbana) o en suelos de poca cohesión.

Vea También:

Principio

Cálculo del tramo a acerrojar (método de Alabama)


M Aplicación práctica

Ejemplo

PRINCIPIO

Esta técnica consiste en acerrojar las juntas en una longitud suficiente a ambos lados del codo, lo que permite utilizar las fuerzas de frotamiento suelo/caño para equilibrar la fuerza de empuje hidráulico.

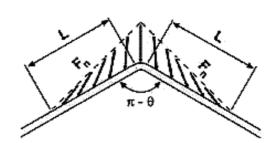
El cálculo del tramo a acerrojar es independiente del sistema de acerrojado utilizado.

CÁLCULO DEL TRAMO A ACERROJAR (MÉTODO DE ALABAMA)

Longitud a acerrojar :

$$L = \frac{PS}{F_n} \left(\frac{\pi}{2} \cdot \frac{\theta}{2} \right) tg \frac{\theta}{2} \times C$$

L: longitud a acerrojar: (m)


P: presión de prueba en obra (Pa)

S: sección transversal (m²)

\(\theta\): ángulo del codo (radicines)

F_n:fuerza de frontamiento por metro de caño (N)

c: coeficiente de seguridad (1,2 en general)

$Fn = K.f (2 W_e + W_p + W_w)$

W_p: peso específico del caño vacío (N/m)

Ww:peso específico del agua (N/m)

We: peso específico del relleno (N/m)

f: coeficiente de frontamiento suelo/caño

K: coeficiente de distribución de las presiones del relleno alrededor de los caños (según compactación K = 1,1 a 1,5)

We =
$$\Upsilon$$
 HD . α_1

 $\alpha_1 = 2/3$ (prueba con juntas descubiertas)

D: diámetro exterior del caño (m)

H: altura de tapada (m)

$f = \alpha _2 tg (0.8 \Phi)$

 Φ = ángulo de fricción interno

α 2 =1; caño revestido de zinc + pintura bituminosa

α₂ = 2/3; caño con manga de polietileno; eligiendo

K. f = mín [K. $^{2}/_{3}$ tg (0,8 Φ); 0,3]

La longitud del tramo a acerrojar puede aumentarse por un coeficiente de seguridad que es función:

- de las necesidades de una colocación cuidadosa,
- de la calidad y compactación del relleno,
- de la incertidumbre de las características físicas del relleno.

Suelo 	
<u> </u>	W _e
=	111
	
	(1)
	Ψ
	V _{p+W_w}
	pw

θ	$\left(\begin{array}{cc} \frac{\pi}{2} - \frac{\theta}{2} \end{array}\right)$ tg $\frac{\theta}{2}$
Brieda ciega	1
Codo 90°	0,7854
Codo 45°	0,4880
Codo 22° 30'	0,2734
Codo 11° 15'	0,1450

Es conveniente en tal caso, considerar la presencia parcial o no, de la capa freática, corrigiendo el peso del caño lleno mediante el empuje de Arquimedes correspondiente.

APLICACIÓN PRÁCTICA

Caso de un terreno de resistencia mecánica media

- Terreno: grava / arenas limosas, arcillosas
- ángulo de fricción interno Φ = 30°
- resistencia 0,6 daN/cm³
- masa volumétrica = 2000 kg/m³
- no hay napa freática
- caño revestido de zinc + pintura bituminosa
- coeficiente de seguridad: 1,2

Vea tabla en la página siguiente.

Caso de una presión P diferente de 1,0 MPa

Corregir el valor L de la tabla por el factor multiplicador L x P (donde P se expresa en MPa).

Caso de utilización de la manga de polietileno

Multiplicar la longitud a acerrojar de la **tabla** abajo por 1,9. No olvidar lo factor multiplicador descrito acima, cuando existir.

EJEMPLO

Calcular la longitud a acerrojar para:

- un codo a 45°
- canalización DN 500, clase K9
- presión de prueba de 2,5 MPa
- sin manga de polietileno
- terreno medio
- sin napa freática
- altura de tapada 1,5m

Para las condiciones de colocación medias definidas anteriormente, la tabla indica:

- L = 9,5 m P = 1,0 MPa, sin manga de polietileno
- L = 23,8 m P = 2, 5 MPa, sin manga de polietileno

Longitud (en m) a acerrojar de un lado y de otro del codo para una presión de prueba de 1,0 MPa cualquiera que sea el sistema de acerrojado utilizado:

							Altura	a de Tap	ada						
DN	Codo 90°		Codo 45°		Co	Codo 22° 30'		Codo 11° 15'		Brida ciega					
	1 m	1,5 m	2 m	1 m	1,5 m	2 m	1 m	1,5 m	2 m	1 m	1,5 m	2 m	1 m	1,5 m	2 m
80	4,5	3,1	2,3	2,8	1,9	1,5	1,6	1,1	0,8	0,8	0,6	0,5	5,7	3,9	3,0
100	5,4	3,7	2,8	3,4	2,3	1,8	1,9	1,3	1,0	1,0	0,7	0,5	6,9	4,7	3,6
150	7,7	5,3	4,0	4,8	3,3	2,5	2,7	1,8	1,4	1,4	1,0	0,7	9,8	6,7	5,1
200	9,9	6,8	5,2	6,1	4,2	3,2	3,4	2,4	1,8	1,8	1,3	1,0	12,6	8,7	6,6
250	12,0	8,3	6,4	7,5	5,2	4,0	4,2	2,9	2,2	2,2	1,5	1,2	15,3	10,6	8,1
300	14,1	9,8	7,5	8,7	6,1	4,7	4,9	3,4	2,6	2,6	1,8	1,4	17,9	12,5	9,6
350	16,0	11,2	8,6	9,9	7,0	5,4	5,6	3,9	3,0	2,9	2,1	1,6	20,3	14,3	11,0
400	17,9	12,6	9,7	11,1	7,8	6,0	6,2	4,4	3,4	3,3	2,3	1,8	22,8	16,0	12,4
450	19,7	14,0	10,8	12,3	8,7	6,7	6,9	4,9	3,8	3,6	2,6	2,0	25,1	17,8	13,8
500	21,5	15,3	11,9	13,4	9,5	7,4	7,5	5,3	4,1	4,0	2,8	2,2	27,4	19,5	15,1
600	25,0	17,9	14,0	15,5	11,1	8,7	8,7	6,2	4,9	4,6	3,3	2,6	31,8	22,8	17,8
700	28,2	20,4	16,0	17,5	12,7	9,9	9,8	7,1	5,6	5,2	3,8	2,9	35,8	25,9	20,3
800	31,2	22,8	17,9	19,4	14,1	11,1	10,9	7,9	6,2	5,8	4,2	3,3	39,8	29,0	22,8
900	34,1	25,0	19,8	21,2	15,6	12,3	11,9	8,7	6,9	6,3	4,6	3,7	43,4	31,9	25,2
1000	36,9	27,2	21,6	22,9	16,9	13,4	12,8	9,5	7,5	6,8	5,0	4,0	46,9	34,7	27,5
1200	41,9	31,4	25,1	26,0	19,5	15,6	14,6	10,9	8,7	7,7	5,8	4,6	53,4	40,0	32,0

AGUAS AGRESIVAS O CORROSIVAS

Las características físico-quimicas de las aguas transportadas en las redes pueden ser muy diferentes y permiten definirlas por su corrosividad (propensión a atacar los metales sin revestimientos) y su agresividad (para con los materiales a base de cemento). Las cañerias **Saint-Gobain Canalização** cuentan con revestimientos interiores que les permiten transportar los diferentes tipos de aguas que se pueden encontrar.

El comportamiento de un agua frente a los metales ferrosos y los productos a base de cemento depende de numerosos factores: mineralización, contenido de oxígeno, conductividad eléctrica, pH, temperatura, etc.

Vea También:

Aguas corrosivas

Aguas agresivas

Concepto

Determinadas aguas atacan las cañerias metálicas que carecen de revestimiento interior. Las reacciones químicas producen hidróxido ferroso, luego férrico, y a continuación generan la formación de nódulos, inclusive de tubérculos, que pueden con el tiempo, disminuir la sección de la cañeria y aumentar las pérdidas de carga de manera significativa.

- Realidad del fenómeno

Este fenómeno se encuentra en las antiguas cañerias sin revestimiento interior. Actualmente, las cañerias de hierro fundido dúctil Saint-Gobain Canalização son revestidas interiormente con un mortero de cemento que elimina este riesgo.

Téngase en cuenta que la corrosión por las aguas potables suele ser lenta. Las normas para agua potable recomiendan que se distribuyan aguas no corrosivas y no agresivas, con lo que se garantiza al mismo tiempo, la permanencia de la calidad de las aguas y la protección de las cañerias en instalaciones públicas y privadas.

AGUAS AGRESIVAS

Concepto

La agresividad de un agua se define según la propensión que tiene de atacar los materiales con contenido de calcio (ejemplo: conglomerantes hidráulicos). Según el análisis químico, la mineralización, el pH, y la temperatura del agua transportada, son posibles tres casos:

- un agua en equilíbrio calcocarbónico no produce, para una temperatura dada, ni ataque ni precipitación de carbonato cálcico
- un agua incrustante tiende a depositar sales de calcio (carbonato...) en la pared interior de las canalizaciones
- un agua agresiva puede atacar determinados elementos constitutivos del mortero de cemento que contienen calcio (cal, carbonatos cálcicos, silicatos o silico-aluminatos de calcio).

Medida

La determinación de la agresividad se realiza en base a un análisis del agua, empleando gráficos o ábacos que permitan situar el agua examinada en relación con la curva de equilibrio o, más

sencillamente, mediante un programa de computación. Este medio rápido permite caracterizar el agua, en función de diferentes temperaturas, y calcular el CO² agresivo así como índices caracteristicos, como por ejemplo el índice de saturación de *Langelier*, que corresponde a la diferencia entre el pH real del agua y el pH de saturación.

Las recomendaciones acerca de la calidad del agua potable tienden cada vez más a que no sean ni agresivas ni corrosivas.

Dada la gran variedad de aguas transportadas, es posible encontrar aguas poco mineralizadas (aguas blandas) que pueden atacar los materiales en contacto, así como aguas corrosivas y/o agresivas. Vea **Revestimientos Internos**.

REVESTIMIENTOS INTERNOS

Un revestimiento interior tiene por finalidad:

- garantizar la conservación de las características hidráulicas de la cañeria al paso del tiempo,
- evitar los riesgos de ataque a la pared interior por la aguas transportadas,
- mantener la calidad de las aguas transportadas.

DEFINICIÓN

Los revestimientos interiores de los caños **Saint-Gobain Canalização** pueden clasificarse en dos categorías, según la agresividad de las aguas transportadas:

- los revestimientos clásicos, con mortero de cemento de alto horno, apropiado para la mayoria de las aguas crudas y potables,
- las protecciones reforzadas, con cemento aluminoso, apropiado para aguas agresivas (aguas dulces, ácidas, altamente abrasivas...).

Vea Aguas Agresivas o Corrosivas.

MORTERO DE CEMENTO

La protección interior clásica de los caños **Saint-Gobain Canalização** está constituida de un mortero de cemento que garantiza:

- excelentes condiciones de flujo hidráulico, el que se mantiene con el paso del tiempo,
- la manutención de potabilidad del agua transportada,
- una protección eficaz contra la agresividad de las aguas.

Vea También:

- Procedimiento de aplicación
- Flujo -Desempeño hidráulico
- Mecanismo de protección
- Propiedades mecánicas
- **⋈** Normas

PROCEDIMIENTO DE APLICACIÓN

El revestimiento interior de cemento se aplica por centrifugación. Con este método, utilizado por **Saint-Gobain Canalização**, el mortero se vierte en el caño que gira a gran velocidad, lo que asegura una buena calidad del revestimiento interior. A continuación, el mortero de cemento fragua a temperatura y humedad controladas para que pueda alcanzar su resistencia mecánica óptima. La ventaja del procedimiento de centrifugación es que produce una superficie interior lisa, compuesta de partícula mas fínas, y reduce la relación agua/cemento por eliminación del agua. Este procedimiento permite obtener las siguientes propiedades:

- falta compacidad del mortero, y baja porosidad,
- baja rugosidad,
- buen agarre del cemento.

FLUJO-DESEMPEÑO HIDRÁULICO

El mortero de cemento presenta una superficie interior de baja rugosidad lo que favorece el flujo, disminuye las pérdidas de carga y garantiza a lo largo del tiempo, el rendimiento hidráulico. El coeficiente de rugosidad (fórmula de Colebrook) de un caño es k=0,03mm; **Saint-Gobain Canalização** recomienda que se utilice el valor de k=0,1mm para el dimensionamiento de redes de agua potable, con el fin de tener en cuenta las diversas pérdidas de carga singulares.

MECANISMO DE PROTECCIÓN

El revestimiento interior de cemento es activo y no actúa como una simple barrera sino que participa químicamente en la protección del hierro por el fenómeno de pasivación. Durante el relleno del caño, el agua embebe poco a poco el mortero de cemento y se enriquece en elementos alcalinos, con lo que deja de ser corrosiva cuando llega a la proximidad del metal.

Colmatación de las fisuras

La normatización reconoce y tiene en cuenta la colmatación de las fisuras. Pequeñas fisuras pueden ser observadas en el revestimiento interior del mortero de cemento, pero cuando los caños son colocados en uso, las fisuras desaparecen bajo el efecto de dos reacciones:

el hinchamiento (rápido) del mortero de cemento cuando el caño se llena de agua,

la hidratación (lenta) de los elementos constitutivos del cemento.

PROPIEDADES MECÁNICAS

Dilatación

El coeficiente de dilatación térmica lineal de los revestimientos interiores de mortero de cemento es de aproximadamente 12 x 10⁻⁶ m/m/°C, valor casi idéntico al del hierro fundido dúctil (11 x 10⁻⁶ m/m/°C), lo que elimina los riesgos de fisuración por dilatación térmica diferencial.

Resistencia mecánica del mortero de cemento

La cualidad de adherencia del mortero de cemento al hierro le da a este revestimiento dos cualidades importantes:

- buena resistencia a depresiones debidas a los golpes de ariete,
- buen comportamiento ante la flexión y la ovalización,
- bajo coeficiente de rugosidad.

Se ha demostrado, por pruebas de flexión longitudinal realizadas en los caños de pequeño diámetro, la capacidad del revestimiento interior de cemento a resistir a una deformación limitada del caño.

Para los caños de gran diámetro, más sensibles a los efectos de ovalización, las pruebas de flexión sobre anillos, han demostrado la buena resistencia del revestimiento interior de cemento bajo importantes cargas de relleno.

Abrasión

El mortero de cemento posee una buena resistencia a la abrasión, lo que permite que las cañerias sean aptas para el tranporte de aguas brutas cargadas de partículas abrasivas.

Consultar a Saint-Gobain Canalização sobre esta aplicación.

NORMAS

- NBR 8682: Revestimiento interno con mortero de cemento en caños de hierro fundido dúctil.
- ISO 4179: Revestimiento interno con mortero de cemento centrifugado. Prescripciones generales.
- NBR 11828: Mortero para revestimiento interno de cañerias de acero, hierro fundido gris o dúctil, destinadas a la conducción del agua.

CORROSIVIDAD DE LOS SUELOS

Las cañerias enterradas estan sujetas a numerosas solicitaciones, entre ellas la corrosividad de los terrenos y rellenos. Las cañerias **Saint-Gobain Canalização** poseen una buena resistencia contra la corrosión, própia del hierro fundido dúctil. Esta resistencia se aumenta con un revestimiento de zinc. Sin embargo, en algunos casos, lo revestimiento de zinc puede no ser suficiente para proteger los caños de lo medio agresivo siendo necesário utilizar una protección adicional con manta de polietileno. El equípo técnico **Saint-Gobain Canalização** efectúa estudios de los terrenos, cuando son solicitados, para avaliar la corrosividad de lo suelo y optar por la utilización o no de la manta de polietileno.

Vea también:

- **Estudio topográfico**
- **Estudio** geológico
- **Estudio** en el terreno
- Protección de las cañerias de hierro fundido dúctil

ESTUDIO TOPOGRÁFICO

• Índices generales de corrosividad

Se determinan los índices generales de corrosividad mediante un mapa detallado del lugar son considerados puntos susceptibles de una corrosividade fuerte:

- los puntos bajos del relieve pós son más húmedos, o sea más susceptibles de una mayor corrosividad.
- los cursos de agua, áreas húmedas,
- los charcos, pantanos, lagos, zonas de turba y otros, ricos en ácidos orgánicos, bacterias, etc.
- los estuarios, pólders, marismas y terrenos salinos situados a orillas del mar.

Indices de contaminación y corrosión específicos

Con la ayuda de los planos topográficos, se determinan la presencia de los indices de poluición y de corrosividad específicos, tales como:

- las zonas contaminadas por afluentes diversos, tales como, basurales, vertidos de destilerías, etc. o por aguas servidas de origen doméstico,
- los depósitos de procedencia industrial como escorias, carbón, etc.,
- las instalaciones industriales o equipamentos que utilizan corriente eléctrica continua (obras con protección catódica, tracción eléctrica, fábricas, etc).

El estudio detallado del lugar determina los diferentes variables encontradas, e informa acerca de la naturaleza de los terrenos y su corrosividad natural.

ESTUDIO GEOLÓGICO

En base a un análisis preliminar se pueden distinguir terrenos:

Con poco riesgo:

- arenas y gravas,
- materiales inorgánicos,
- calizas,

Con alto riesgo:

arcillas,

Con altísimo riesgo:

- yesos,
- piritas (hierro: pirita, calcopirita, cobre)
- sales para industrias químicas (cloruro de sódio, sulfato de cal)
- combustibles fósiles (lignitas, turbas, carbones, asfaltos).
- suelos orgánicos.

Hidrogeología

La humedad constituye un factor agravante de la corrosividad de un terreno.

El estudio hidrogeológico determina cuales son los terrenos impermeables, los capaces de retener el agua, así como las zonas acuíferas. El límite de separación de estos terrenos suele ir marcado por niveles de manantial. Es importante considerar este límite con mucha atención, porque la corrosividad del suelo impermeable puede ser muy alta. Tienen la misma corrosividad de los terrenos acuíferos cuando drenan terrenos vecinos que contienen sustancias minerales solubles (cloruro de sódio, sulfato cálcio, etc.).

ESTUDIO EN EL TERRENO

Mediante observaciones visuales, verificación de la resistividad y análisis (muestras del suelo), el estudio del terreno permite confirmar y completar los resultados topográficos y geológicos.

La resistividad eléctrica de un suelo indica su capacidad de facilitar el fenómeno de corrosión electroquímica sobre el metal. Y constituye un parámetro significativo porque:

- integra prácticamente todos los factores que influencian la corrosividad (contenido en sales, presencia del agua...),
- es muy fácil de medir in situ (método WENNER o de cuatro estacas).

Los diferentes tipos de análisis se efectuan sobre el trazado previsto de la red. Su espaciamiento dependerá de la topografía del terreno y de los valores medidos.

Un suelo es tanto más corrosivo cuanto más baja es su resistividad. Para resistividades inferiores a 3000 ohms x cm, éstas deben ser confirmadas con una muestra tomada a la profundidad de instalación y medir la resistividad en el laboratorio, en célula soil-box.

PROTECCIÓN DE LAS CAÑERIAS DE HIERRO FUNDIDO DÚCTIL

La experiencia acumulada en varias decenas de años por Saint-Gobain Canalização, demuestra que un alto porcentaje de los terrenos tiene una corrosividad baja o media, lo que permite utilizar las cañerias Saint-Gobain Canalização con una protección exterior de base: metalización con zinc más pintura bituminosa. Ver **Zinc**.

Ciertas zonas necesitan de una protección reforzada o adicional. Ver **Manga de Polietileno**. Se trata de suelos:

- de resistividad inferior a 2500 $\Omega \times$ cm (terrenos mal drenados) o de 1500 $\Omega \times$ cm (terrenos bien drenados),
- con un pH inferior a 5,5,
- constituidos por rellenos artificiales (escorias, residuos industriales), o poluídos por afluentes de origen industrial o agrícola.

La manga de polietileno debe ser utilizada igualmente en los casos de suelos donde circulan corrientes vagabundas (vías de ferrocarril, instalaciones industriales de corriente continua, o estructuras con protección catódica, redes eléctricas...).

REVESTIMIENTOS EXTERIORES

El objetivo que debe cumplir un revestimiento exterior es garantizar una protección duradera contra la agresividad de los terrenos.

Saint-Gobain Canalização ofrece una gama completa de revestimientos exteriores, adecuados a todos los casos de corrosividad de los suelos.

Los revestimientos exteriores de los caños y piezas especiales **Saint-Gobain Canalização**, pueden clasificarse en dos categorías, según la corrosividad de los suelos:

- el revestimiento clásico, que conviene a la gran mayoría de los suelos,
- las protecciones reforzadas, adaptada a los terrenos de alta corrosividad.

Vea Corrosividad de los Suelos.

A requerimiento de los clientes, el equipo técnico de **Saint-Gobain Canalização** realiza estudios de suelos, con el fin de recomendar la solución más adecuada.

El siguiente cuadro presenta una gama de revestimientos exteriores.

Protección	Caños	Piezas especiales			
	Solución de base				
Revestimientos clásicos	Zinc metálico Pintura bituminosa	Pintura bituminosa			
Protecciones reforzadas	Solución de base + Manga de polietileno aplicada in situ				

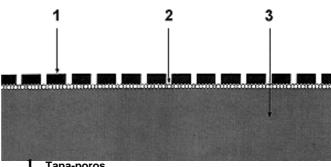
ZINC

- Composición del revestimiento
- Mecanismo de protección
- Campo de utilización
- **Normas**

COMPOSICIÓN DEL REVESTIMIENTO

El revestimiento clásico está constituido:

- por una capa metálica de zinc aplicada por proyección (cantidad mínima:130g/m², de acuerdo a la normativa brasileña e internacional),
- por pintura bituminosa (tapa-poros) de 80 micras de espesor medio.

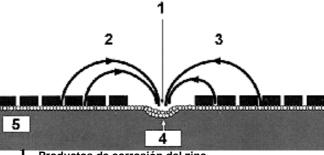

MECANISMO DE PROTECCIÓN

La metalización con zinc es una protección activa debida a la acción galvanica de la pila hierro-zinc. Su mecanismo es doble:

Formación de una capa estable de protección

Al contacto con el terreno, el zinc metálico se transforma lentamente en una capa densa, adherente, impermeable y contínua, de sales de zinc insolubles que constituyen una película protectora.

La pintura bituminosa, completamente permeable permite un proceso de protección galvánica, favoreciendo la formación de una película estable e insoluble, de conversion del zinc.



- 1. Tapa-poros
- 2. Zinc metalico
- 3. Pared del caño de hierro

Auto-cicatrización de las partes dañadas

Una de las particularidades del revestimiento exterior de zinc es su capacidad de restaurar la continuidade de la capa protectora en lugares donde existen daños locales de pequeña superficie.

Los iones Zn++ migran a través del tapa-poros para colmatar la zona dañada y a continuación se transforman en productos de corrosión de zinc, estables e insolubles.

- Productos de corrosión del zinc
- 2, ions Zn++
- 3. Corriente
- 4. Daños
- 5. Hierro

CAMPO DE UTILIZACION

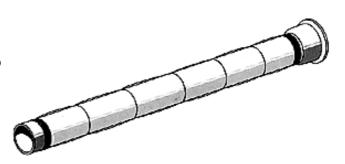
El revestimiento a base de zinc es prescripto según la norma NBR 11827 y es resistente a la mayoria de los suelos. Confirmado por su larga experiencia **Saint-Gobain Canalização** lo ha escogido como revestimiento standard de base para toda la producción de caños **Saint-Gobain Canalização**.

No obstante existen ciertos casos en los cuales el revestimiento de zinc necesita ser reforzado por una manga de polietileno. En casos extremos de corrosividad de los suelos, se impone un aislamiento completo de la cañeria, limitado a la zona de alta corrosividad. Vea **Corrosividad de los Suelos** y **Revestimientos Exteriores**.

El equipo técnico de **Saint-Gobain Canalização** efectúa estudios de suelos, a requerimiento de los clientes, con el fin de orientar el revestimiento exterior más adecuado.

La protección de zinc es particularmente adecuada a las condiciones de transporte, almacenamiento, mantenimiento, y deslizamientos del relleno; gracias a su resistencia, protegiendo los caños durante mucho tiempo.

NORMAS


NBR 11827: Revestimiento exterior de zinc en caños de hierro fundido dúctil.

ISO 8179: Caños de hierro fundidodúctil: revestimiento exterior de zinc.

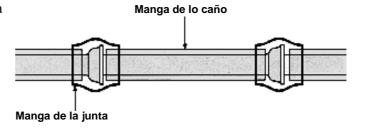
MANGA DE POLIETILENO

La manga de polietileno es una película de polietileno de baja densidad, con un espesor de 200 \(\mathcal{\mu} \) m, que envuelve la cañeria en el momento de su instalación. Es utilizada como complemento del revestimiento exterior de las cañerias (zinc metálico + pintura bituminosa), en casos de alta corrosividad de los suelos o cuando existen corrientes vagabundas.

Vea También:

Descripción

Mecanismo de protección


Campo de utilización

Instalación y Normas

DESCRIPCIÓN

La manga de polietileno (polietileno de baja densidad), es aplicada sobre el caño o piezas especiales mediante:

- cintas adhesivas de plástico, en cada extremidad,
- ligaduras intermedias, con alambre revestido de plástico.

La técnica de enmangado que consiste en utilizar una manga para el cuerpo del caño (colocada fuera de la zanja) y una manga para la junta (colocada dentro de la zanja una vez realizado el empalme), es recomendable porque garantiza una protección más eficaz.

MECANISMO DE PROTECCIÓN

La manga de polietileno interviene como complemento del revestimiento de zinc. Su mecanismo de protección consiste en aislar los caños del suelo corrosivo (supresión de los pares electro-químicos) y en evitar las entradas y salidas de corrientes vagabundas.

En caso de infiltración mínima del agua por debajo de la manga, sigue funcionando la protección complementaria asegurada por este dispositivo, ocurriendo la sustitución de un medio heterogéneo (el suelo) por un medio homogéneo confinado y de baja espesura (agua del suelo).

CAMPO DE UTILIZACIÓN

Saint-Gobain Canalização recomienda que se aplique esta protección complementaria para los suelos de alta corrosividad (vea **Corrosividad de los Suelos**), entre los cuales:

- los suelos de baja resistividad eléctrica (señal de una fuerte corrosividad),
- las zonas atravesadas por corrientes vagabundas,
- suelos cuyo análisis revela un alto contenido en sulfatos y cloruros, o una actividad bacteriana.

Su utilización puede decidirse en el momento de abrir la zanja, cuando lo justifiquen las condiciones locales.

El equipo técnico de **Saint-Gobain Canalização** esta disponible para efectuar estudios del suelo, con el fin de recomendar la protección más adecuada.

INSTALACIÓN

Vea Colocación de la Manga de Polietileno en Notas Técnicas - Asentamiento.

Saint-Gobain Canalização provee la manga de polietileno con las instrucciones necesarias, a fin de facilitar las operaciones de instalación y mejorar la calidad de la instalación.

NORMAS

NBR 12588: aplicación por envoltorio de polietileno para caños y piezas especiales de hierro dúctil.

ISO 8180: cañerias de hierro fundido dúctil, manga de polietileno.

CAPÍTULO 3 - NOTAS TÉCNICAS - ASENTAMIENTO:

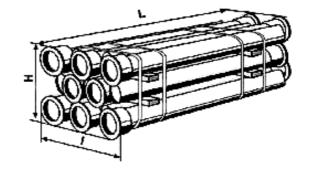
ACONDICIONAMIENTO

- Caños
- Piezas especiales y contrabridas
 - DN < 300
 - -DN > 300
- Aros de goma, bulones y arandelas

CAÑOS DN > 300

Los caños de hierro dúctil de DN 300 a 1200 son suministrados por la fábrica sin empaquetar.

CANÕS DN ≤ 300


Los caños de DN 80 a 300 son entregados en paquetes; a pedido del cliente pueden tambien salir sin empaquetar.

Los paquetes fueron diseñados para facilitar y hacer más rápidas las operaciones de carga, descarga y traslado de los caños.

En caso de almacenamiento provisorio, pueden ser colocados superpuestos, hasta un máximo de 2,50m de altura. Para un almacenamiento correcto, los paquetes deben ser abiertos y los caños apilados de acuerdo con los métodos que se describen más adelante.

La forma de los paquetes es función del DN y de la clase de los caños, conforme al cuadro y figura siguientes:

Vea Almacenamiento de los caños.

		Paquetes L	1	Dimen	siones	Peso medio	
DN	Clase		_	I	Н	del paquete	
		Camadas x Caños	m	m	m	kg	
80	K-9	3 × 5	6,30	0,57	0,42	1305,0	
100	K-9	3 × 5	6,30	0,67	0,50	1611,0	
150	K-9	3 × 3	6,30	0,59	0,66	1468,8	
150	K-7	3 × 3	6,30	0,59	0,66	1252,8	
200	K-9	2 × 3	6,30	0,75	0,56	1314,0	
200	K-7	2 × 3	6,30	0,75	0,56	1126,8	
250	K-9	2 × 2	6,30	0,63	0,67	1147,2	
250	K-7	2 × 2	6,30	0,63	0,67	964,8	
300	K-9	2 × 2	6,30	0,74	0,77	1444,8	
300	K-7	2 × 2	6,30	0,74	0,77	1190,4	

PIEZAS ESPECIALES Y CONTRABRIDAS DN < 300

Las piezas especiales y contrabridas se suministran sin empaquetar o embaladas protegidas con un film de plástico, dependiendo de las cantidades pedidas.

PIEZAS ESPECIALES Y CONTRABRIDAS DE DN > 300

Las piezas especiales y contrabridas de DN > 300 no se empaquetan.

AROS DE GOMA, BULONES Y ARANDELAS

Los aros de goma de junta y bulones se suministran en cajas o bolsa, según las cantidades pedidas.

TRANSPORTE

Es necesario tener en consideración algunas reglas durante la carga de los caños, para minimizar los riesgos de accidentes durante su transporte. Cualquiera que sea el medio utilizado, es obligatorio prever un soporte correcto resistente y durable con un calzado o estibado, de madera tanto en la parte inferior como entre las camadas de caños.

Por otro lado, los caños deben ser calzados lateralmente y en sus extremos, para impedir cualquier movimiento longitudinal, en caso de una frenada brusca del camión o vagón.

El transporte vial exige que los camiones abiertos sean adecuados al tipo de material a transportar. La longitud útil de los vehículos o remolques será la necesaria para que los caños no sobresalgan. Los soportes laterales deben ser reforzados con auxílio de por lo mínimo tres estacas para cada hilera de caños.

Los vehículos deben ser apropiados para el transporte y las operaciones de carga y descarga de los caños y piezas especiales de hierro fundido dúctil. Es conveniente respetar las siguientes reglas básicas:

- evitar el roce entre los caños y piezas especiales con el fin de evitar daños al revestimiento.
- evitar cualquier contacto directo de los caños con el piso del remolque (mantener el nivel de los caños mediante el auxilio de dos piezas de madera paralelas de buena calidad, fijadas al piso),
- facilitar la carga y descarga de los caños en buenas condiciones de seguridad (utilizar cintas textiles o ganchos revestidos con goma, no deben usarse las eslingas metálicas),
- garantizar buenas condiciones de carga durante el transporte, utilizar vehículos o remolques con un cierre lateral obligatorio para estabilizar la carga (estacas laterales con dimensiones adecuadas),
- estibar la carga mediante cinchas textiles y sistemas de tensores de palanca.

Para mayores detalles sobre la conformidad del medio de transporte seleccionado respecto a las exigencias para la carga, consultar a **Saint-Gobain Canalização.**

MANIPULEO

Las característica mecánicas de los caños y piezas especiales de hierro fundido dúctil, así como la resistencia de los revestimientos son adecuadas para las condiciones de manipuleo en las obras. No obstante, es conveniente respetar ciertas precauciones elementales.

Vea También:

◯ Consignas básicas

M Izado

Manipuleo en obra

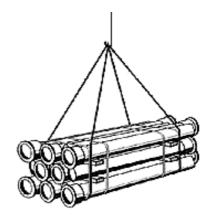
CONSIGNAS BÁSICAS

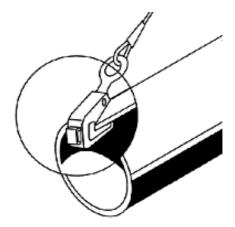
- Usar maquinaria de elevación de suficiente potencia.
- Maniobrar con suavidad.
- Guiar el izado al principio y al final de la elevación.
- Evitar el balanceo, choques o roce entre los caños y el suelo.

Estas precauciones aumentan en relación al diámetro de los caños.

IZADO

■ Paquetes de caños DN < 300


Levantar los paquetes individualmente, mediante cintas que envuelvan la carga.


El izado de dos o más paquetes simultaneamente no deberá hacerce sin antes tomar las debidas precauciones; consultar a **Saint-Gobain Canalização.**

Los paquetes no deben ser movilizados con ganchos.Las eslingas metálicas y cincha, no estan dimensionados para soportar el peso de los paquetes.

Caños DN > 300

Ilzado por los extremos de los caños: El levantamiento debe ser hecho mediante ganchos apropiados, revestidos con una protección de goma o cualquier material similar.

Ilzado por el centro del caño: Utilizar una cincha o cabo de acero revestido.

<u>Importante</u>: Durante lo manipuleo no dejar los caños caer al suelo, mismo que encima de arena o neumáticos.

MANIPULEO EN OBRA

En la obra, y salvo prescripciones en contra, se deben disponer los caños a lo largo de la zanja, del lado contrario a los desmontes, con sus enchufes orientados en el sentido del montaje.

Evitar:

- arrastrar los caños por el suelo, para no dañar el revestimiento exterior,
- colocar los caños en desequilibrio (por ejemplo encima de raices),
- colocar los caños próximos a areas en donde se usarán explosivos para remoción de rocas, por los riesgos de proyección de piedras.

ALMACENAMIENTO DE LOS CAÑOS

El almacenamiento de los caños en la obra debe permitir un fácil acceso para la identificación, control y eventuales reparaciones.

Vea También:

Condiciones básicas

M Apilado de los caños

M Altura de almacenamiento de los caños

CONDICIONES BÁSICAS

El área de almacenamiento debe ser plana. Evitar:

- los terrenos pantanosos,
- los suelos movedizos,
- los suelos corrosivos.

Cuando llegan a su destino, los materiales deben ser controlados y, si presentan partes dañadas (daños de los revestimientos interiores o exteriores por ejemplo), deben ser reparados antes de su almacenamiento.

Almacenar los caños por diámetro en pilas homogéneas y estables, según un plan racional. Actuar del mismo modo para las piezas especiales, valvulas y accesorios.

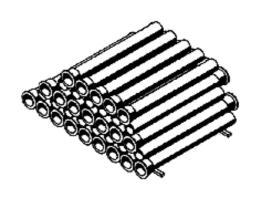
Utilizar piezas de separación de madera (maderos, cuñas,) de suficiente resistencia y buena calidad.

APILADO DE LOS CAÑOS

Almacenamiento de los paquetes

Los paquetes entregados por **Saint-Gobain Canalização** pueden almacenarse en pilas, sobre separadores de 80 x 80 x 2600mm, con tres o cuatro paquetes por camada, y sin superar una altura de 2,50m.

Comprobar periódicamente el estado de los paquetes, en especial el estado y la tensión de los flejes y separadores de madera, así como la estabilidad general de las pilas.


Almacenamiento sin paquetes

Pila contínua, caños alternados (caso nº 1)

Prácticamente, este método es el más interesante desde el punto de vista de la seguridad, del costo del material de calce y de la relación número de caños por volumen de almacenamiento.

Este método exige el izado de los caños por los extremos, mediante ganchos (ver **Manipuleo**); el empleo de un cabo con ganchos permite el izado simultáneo de varios caños, siempre que la grua tenga capacidad.

Camada inferior: La primera camada se coloca sobre dos maderos paralelos, situados a 1 m respectivamente del extremo del enchufe y de la espiga. Los caños quedan paralelos. Los enchufes se tocan y no deben estar en

contacto con el suelo. Los caños externos, se calzan por el lado de la espiga y del enchufe mediante cuñas clavadas en los maderos. Los caños intermedios se calzan unicamente por el lado de la espiga, con cuñas de dimensiones menores.

Camadas superiores: Las camadas superiores están constituidas, alternadamente, por caños colocados con los enchufes en sentido opuesto en relación a la camadas inferiores.

Todos los enchufes de una camada deben sobrepasar las espigas de la camada inferior en aproximadamente 10 cm (para evitar la deformación de las espigas). Los cuerpos de los caños de dos camadas consecutivas quedan entonces en contacto.

Pila continua, enchufes para el mismo lado (caso nº 2)

Camada inferior: La colocación de la primera camada es idéntica al caso anterior.

Camadas superiores: Los caños se alinean verticalmente. Cada camada se separa con separadores de madera de espesor ligeramente superior a la diferencia de los diámetros (cuerpo-enchufe). Los caños de los extremos de cada camada se calzan con cuñas clavadas en los maderos.

Este método permite todos los tipos de izado (por la extremidad, por ganchos, por el cuerpo con cinchas).

Almacenamiento en cuadrado (caso nº 3)

Camada inferior: La colocación y calzado de la primera camada son idénticos al caso nº 1, pero los caños se colocan alternativamente para un lado y otro con el cuerpo en contacto. Además, los enchufes deben sobrepasar los extremos de las espigas de los caños adyacentes en la totalidad del enchufe más 5cm. Para el almacenamiento de los caños de DN > 150, la pila debe asentar sobre tres maderos en lugar de dos.

Camadas superiores: Cada camada se forma con caños paralelos colocados alternados, lo mismo que la primera camada. Los caños de una camada van dispuestos perpendicularmente a los de la camada inferior. Las espigas de los caños son calzadas naturalmente por los enchufes alternados de las camadas inferiores. Este

método limita al máximo el material de calce pero, debido a la constitución de las camadas, implica el izado caño por caño, por los extremos.

ALTURA DE ALMACENAMIENTO DE LOS CAÑOS

Según el tipo de apilado, la clase y el DN de los caños, se recomienda no sobrepasar los valores que se indican a continuación (en número máximo de camadas).

DN	Mét	odo 1	Método 2 y 3		
DN	Clase K7	Clase K9	Clase K7	Clase K9	
80	-	70	-	30	
100	-	58	-	27	
150	40	40	22	22	
200	31	31	18	18	
250	25	25	16	16	
300	21	21	14	14	
350	18	18	12	12	
400	15	16	11	11	
450	12	14	10	10	
500	10	12	8	8	
600	7	10	6	7	
700	5	7	4	5	
800	4	6	3	4	
900	4	5	3	4	
1000	3	4	2	3	
1200	2	3	2	2	

ALMACENAMIENTO DE LOS AROS DE GOMA

Debido a las características de los elastómeros, se han de tomar ciertas precauciones para almacenar los aros de goma (elástica, acerrojada interna y mecánica) asi como las arandelas para bridas. Se refieren especialmente a:

- el almacenamiento en locales secos o demasiado húmedos,
- la temperatura ambiente,
- la exposición a la luz,
- la duración del almacenamiento.

Tomar encuenta estas recomendaciones para el almacenamiento de los aros de goma y arandelas evitando que las propiedades de los mismos se alteren.

Vea También:

Almacenamiento
Exposición a la luz

Plazo de utilización

ALMACENAMIENTO

La temperatura ideal de almacenamiento debe estar entre 5°C y 25°C.

Debe evitarse la deformación de los aros de goma a temperatura baja. Antes de su montaje, si la temperatura ambiente esta debajo de 20°C, debe ser restablecida, con el fin de facilitar el montaje (por ejemplo: remojar en agua templada).

Los aros de goma **Saint-Gobain Canalização**, a base de elastómeros vulcanizados, deben ser almacenados en un ambiente de grado medio de humedad.

EXPOSICIÓN A LA LUZ

Los elástomeros son sensibles a la radiación ultravioleta y a la acción del ozono. Por ello, es conveniente almacenar los aros de goma protegidos de la luz - directa del sol o artificial.

PLAZO DE UTILIZACIÓN

La **Saint-Gobain Canalização** estima razonable utilizar los aros de goma en un plazo de seis años después de su fabricación, siempre que sean almacenados siguiendo las condiciones descriptas anteriormente.

REPARACIÓN DEL REVESTIMIENTO EXTERIOR

El revestimiento externo de los caños y piezas especiales puede dañarse durante las operaciones de transporte y almacenaje, o durante la instalación.

La reparación puede ser efectuada en obra o en el local de almacenaje seguiendo un proceso simple.

Pequeños daños (raspones, sin que el revestimiento de zinc esté afectado)

No es necesario ninguna reparación,

Daños mayores (revestimiento de zinc afectado)

La reparación del revestimiento debe ser efectuada con pintura bituminosa, según el seguiente procedimiento.

Producto a utilizar: Pintura enriquecida en zinc.

Material para la aplicación: Cepillo, pincel, rodillo o pistola.

Preparación de la superficie: Cepillar ligeramente la superficie para limpiarla. Secar bien la superficies a revestir.

Aplicación del producto: En caso de temperaturas bajas, humedad o de empleo inmediato del caño, es necesario calentarlo moderadamente con un soplete a gas, hasta aproximadamente 50°C (si se le toca con la mano, quema). Aplicar el producto cruzando las pasadas hasta que la película depositada está al nivel del revestimiento de origen con recubrimiento de las partes vecinas sin dañar.

REPARACIÓN DEL REVESTIMIENTO INTERIOR

Puede ocurrir que el mortero de cemento del revestimiento interior resulte dañado por manipulaciones bruscas o accidentes. Su reparación puede ser hecha por medio de operaciones simples y rapidas.

Vea También:

Daños reparables

Productos a utilizar

Procedimiento de reparación

Reparación de la superficie

M Aplicación del mortero

DAÑOS REPARABLES

Los daños provocados en el mortero de cemento, son reparables en la obra, siempre que no sean demasiado importantes:

- superficie inferior a 0,10 m²,
- longitud de la zona dañada inferior a un cuarto de la circunferencia del caño, sin que haya deformación en la pared del caño.

En caso contrario se recomienda, cortar la parte dañada.

PRODUCTOS A UTILIZAR

Una parte de cemento portland de alto-horno o aluminoso, para dos partes de arena fina. Añadir agua hasta obtener un mortero pastoso.

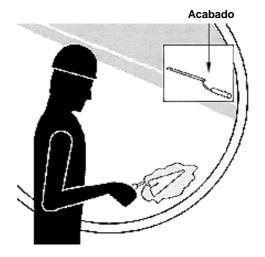
PROCEDIMIENTO DE REPARACIÓN

- Material necesario para la aplicación del mortero
 - cepillo de acero,
 - pincel,
 - cuchara,
 - espátula.

REPARACIÓN DE LA SUPERFICIE

Debe evitarse la reparación del revestimiento del mortero de cemento a temperaturas muy bajas.

- Dentro de lo posible, mover el caño de manera que la zona a reparar quede abajo.
- Eliminar la parte dañada, así como 1 o 2 cm de revestimiento sano, con ayuda de un buril y un martillo.


- Los bordes del área a reparar deben quedar perpendiculares a la superficie de la pared del caño.
- Limpiar con el cepillo de acero las partes sueltas.

- Humedecer la zona a reparar.
- Algunos minutos antes de realizar la reparación, mojar con agua o lechada de cemento el mortero existente, en una faja de aproximadamente 20 cm, alrededor del área afectada.

APLICACIÓN DEL MORTERO

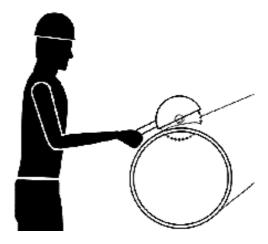
- Aplicar el mortero con la cuchara, compactándolo correctamente de manera de recuperar el espesor inicial del revestimiento interno.
- Alisar la superficie reparada con una espátula.
- Verificar si se han eliminados los intersticios entre el mortero recien aplicado y el original.
- Despúes de concluida la reparación, el área reparada debe ser recubierta con diarios o paño húmedo, para lograr un curado lento y obtener una buena resistencia del mortero aplicado.

CORTE DE LOS CAÑOS

El respeto del trazado de una conducción obliga, por lo general a utilizar piezas especiales y a realizar cortes de los caños en la obra. Los caños de hierro fundido dúctil se cortan sin dificultad.

Vea También:

 Θ


Aparatos a utilizar en la obra

Ы

Procedimiento

APARATOS A UTILIZAR EN LA OBRA

- Maquina electrica o neumática con disco de corte abrasivo de altas revoluciones.
- Maquina de corte en frio con puntas de vidia
- Arco de sierra convencional (para pequeños diámetros).

PROCEDIMIENTO

DN < 300

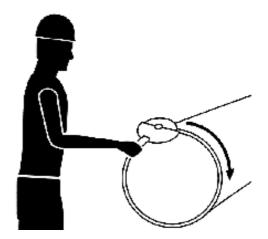
El corte puede hacerse hasta 2/3 de la longitud del caño a partir de la espiga.

Para cortes a más de 2/3 de longitud, debe verificarse que el diámetro exterior a la altura del corte sea inferior a DE + 1mm. Para los valores de DE, ver Caños, piezas especiales y accesorios.

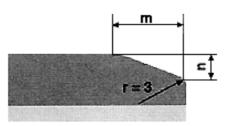
DN > 300

Antes de efectuarse el corte, comprobar si el diámetro exterior a la altura del corte es inferior a DE + 1mm. Para los valores de DE, ver Caños, piezas especiales y accesorios.

Si fuera necesario un gran número de caños con longitud inferior a los normales, consultar a **Saint-Gobain Canalização**.


Corte

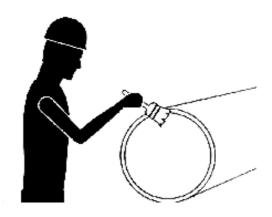
El corte debe ser efectuado obligatoriamente, en un plano perpendicular a la generatriz del caño.


Desbarbado y ejecución del chaflán

Una vez hecho el corte y antes de realizar el empalme, es necesário:

- para las juntas mecánicas (JM), desbarbar las aristas de corte con una lima o una esmeriladora,
- para las juntas automáticas (JGS,JTI,JTE): desbarbar y rehacer el chaflán con ayuda de una esmeriladora manual de disco, para evitar que se dañe el anillo de junta durante el montaje.

Es conveniente respetar las siguientes dimensiones de chaflán:



DN	DE	m	n
DN	mm	mm	mm
80	98	9	3
100	118	9	3
150	170	9	3
200	222	9	3
250	274	9	3
300	326	9	3
350	378	9	3
400	429	9	3
450	480	9	3
500	532	9	3
600	635	9	3
700	738	15	5
800	842	15	5
900	945	15	5
1000	1048	15	5
1200	1255	15	5

Reparación del revestimiento

Rehacer el revestimiento protector en la parte del caño afectada por las operaciones de corte.

Vea Reparaciones del revestimiento externo.

Ejecución del cordón de soldadura y del revestimiento externo.

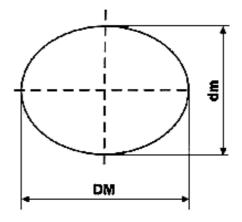
Sólo para juntas acerrojadas

Vea Cordón de Soldadura para Acerrojado

DESOVALIZACIÓN

El transporte y las manipulaciones pueden provocar la ovalización de los caños, de tal manera que resulte imposible montar correctamente los elementos de una conducción. La experiencia demuestra que son extremamente raros los casos de ovalización perjudicial para el montaje de los caños de pequeños y médios diámetros. Por ello es que los métodos que se presentan a continuación se refieren a lo DN > 400.

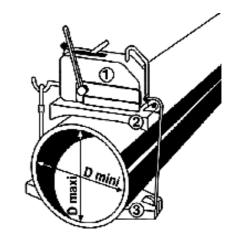
Vea También:


DEFINICIONES

% ovalización= DM - dm × 100 DM + dm

donde:

- DM: diámetro máximo medido,
- dm: diámetro mínimo medido.


En caso de ovalización de un caño, el defecto puede ser eliminado aplicando uno de los siguientes procedimientos, pero comprobando que esta operación no haya provocado daño al revestimiento interno.

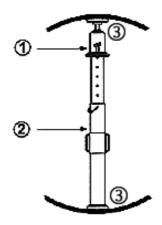
DN 400 a 700

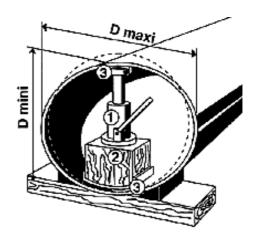
Equipo necesario

- Un tractil de cable tipo TIRFOR (1),
- Un soporte de tractil tipo TIRFOR con guía de cable (2),
- Una zapata con 2 rodillos de guía de cable (3).

Procedimiento

- Montar el aparato según el croquis adjunto, y tensionar el cable.
- Controlar la operación de manera que la espiga no se sobrepase de la forma circular.
- Verificar que esta operación no haya generado ningun daño al revestimiento interior de cemento.
- Con el aparato en posición se efectua el montaje. El aparato debe permanecer en tensión para compensar la deformación elástica del caño durante el montaje de la junta.


DN ≥ 800


Equipo necesario

- Un gato hidráulico (1),
- un taco (o un puntal regulable) (2),
- Dos tacos de protección revestidos con goma y de dimensiones adecuadas (3).

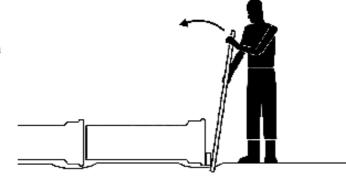
Procedimiento

- Se colocan las piezas según el croquis acima, respetando la posición de la ovalización.
- Se adapta el ajuste del puntal según el diámetro.
- Se acciona el gato hidráulico y se controla la desovalización de manera que la espiga no sobrepase la forma circular.
- Se comprueba que esta operación no haya afectado el revestimiento interior de cemento.
- Con el aparato en posición, se realiza el montaje. El aparato debe permanecer en tensión para compensar la deformación elástica del caño durante el montaje de la junta.
- La tensión debe ser mantenida durante el montaje.

MONTAJE (APARATOS)

El montaje de los caños y piezas especiales **Saint-Gobain Canalização** con junta elástica se realiza facilmente utilizando algunos equipos clásicos de obra: palanca, tensores o tractiles tipo TIRFOR, o la cuchara de la pala hidráulica.

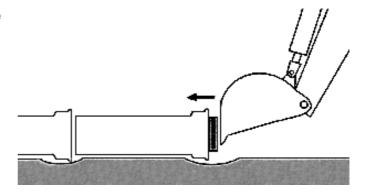
Vea También:


Montaje de los caños y piezas especiales rectas con junta elástica

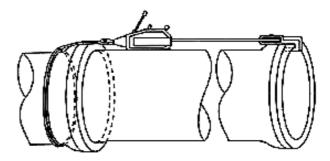
Montaje de piezas especiales con junta elástica

MONTAJE DE CAÑOS Y DE PIEZAS ESPECIALES RECTAS CON JUNTA ELÁSTICA

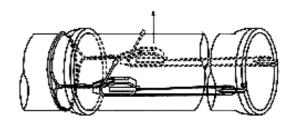
- Palanca: DN 80 a 150


La palanca toma apoyo en el terreno. El canto del enchufe debe protegerse con una pieza de madera dura.

Montaje con la cuchara de una pala hidráulica : todos los DN


Tomando algunas precauciones, es posible utilizar la fuerza hidráulica del brazo y de la cuchara de una pala excavadora para enchufar los caños y las piezas especiales. En este caso:

- intercalar un madero entre el tubo y la cuchara de la pala,
- ejercer un empuje lento y progresivo respetando el procedimiento de montaje de la junta.



■ Tractiles mecánicos tipo TIRFOR

- DN 150 a 300: tráctel tipo TIRFOR, con capacidad de 1.600 daN, eslinga y gancho con protección de goma.
- DN 350 a 600: tráctel tipo TIRFOR, con capacidad de 3.500 daN, eslinga y gancho con protección de goma.

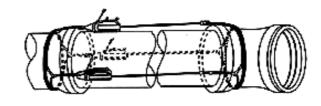
 DN 700 a 1200: 2 trácteles de cable TIRFOR, diametralmente opuestos, 2 eslingas y 2 ganchos con protección de goma.

■ Trácteles de Gatos Hidráulicos

Esta solución se asemeja a la de tractiles tipo TIRFOR (ver antes), y permite un excelente distribucion del esfuerzo de enchufado así como que mantiene el alineamiento de los caños a enchufar.

Los cilindros hidráulicos pueden ser alimentados aprovechandose la unidad hidráulica de una retroexcavadera o camión con polipasto.

La cantidad y presión de los cilindros debe producir fuerzas idénticas al caso de los tractiles mecánicos, indicados para los diferentes diámetros.


MONTAJE DE PIEZAS ESPECIALES CON JUNTA AUTOMÁTICA

- Palanca: DN 80 a 150

■ Tractiles tipo TIRFOR: todos os DN

El procedimiento de montaje es el mismo que para los caños.

MANGA DE POLIETILENO (INSTALACIÓN)

La protección de las cañerias con una manga de polietileno, prevista en la norma NBR 12588 o la ISO 8180, consiste en envolver la cañeria de manera continua abarcando:

- el cuerpo del caño o la pieza especial;
- la junta de cada caño.

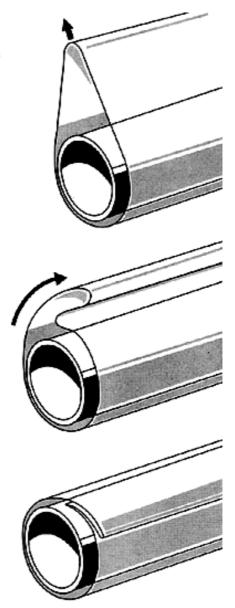
Vea También:

- **☑** Instrucciones básicas
- Olocación de la manga en el cuerpo del caño
- Colocación de la manga en la junta
- Colocación de la manga en las piezas especiales
- M Cantidades y dimensiones

INSTRUCCIONES BÁSICAS

Antes de colocar la manga, los caños o piezas deben estar secos y limpios. Evitar la presencia de tierra u outro material extraño entre el caño y la manga.

El lecho de asiento así como el material de relleno en contacto con el caño, debe ser material seleccionado, exento de piedras o cualquier otro material que pueda dañar la manga durante la instalación.

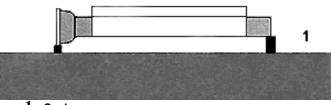

La manga de polietileno debe ser colocada en el caño y ajustada sobre el mismo mediante un doblez, tal como se indica en las figuras.

El recubrimiento entre la manga del cuerpo del caño y la manga de la junta debe asegurar una perfecta continuidad.

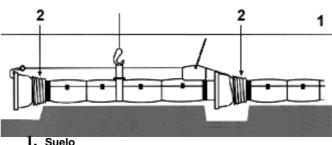
El pliegue o doblez debe ser hecho en la generatriz superior del caño, con el fin de eliminar riesgos durante el relleno de la zanja (penetración de tierra en el pliegue).

No se debe usar una manga que se encuentre rasgada o agujereada y se debe evitar cualquier daño al momento de su instalación. Los defectos de mayor importancia deben ser arreglados mediante un remiendo utilizando la misma manga, los que deben ser suficientes para cubrir el área afectada. Los defectos pequeños pueden ser reparados con cinta adhesiva.

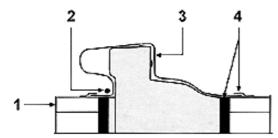
Almacenar la manga de polietileno al abrigo de la luz y el calor.


COLOCACIÓN DE LA MANGA EN EL CUERPO DEL CAÑO

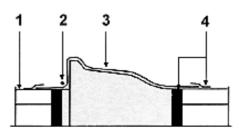
Con el caño apoyado en sus extremos (enchufe y espiga) mediante dos tacos de madera, colocar la manga sobre todo el cuerpo del caño, envolviéndolo cuidadosamente y efectuando el pliegue sobre generatriz, evitando siempre la


Fijar el pliegue con cinta adhesiva.

- Fijar sobre el cuerpo del caño, las extremidades de la manga con cinta adhesiva en toda su circunferencia, de manera que se obtenga un recubrimiento estanco.
- Amarrar con un alambre fino de acero plastificado cada 1,50 m.
- Colocar el caño en la zanja.
- Proceder al montaje, manteniendo sempre el pliegue en la generatriz superior
- Proceder con cuidado para que el cable de acero (montaje con TIRFOR) no dañe la manga.

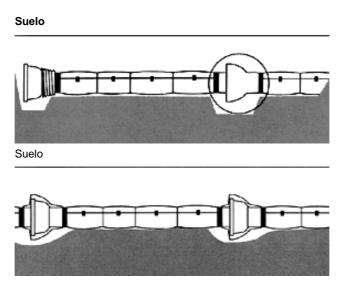


- 1. Suelo
- 2. Cinta adhesiva
- 3. Alambre fino de acero

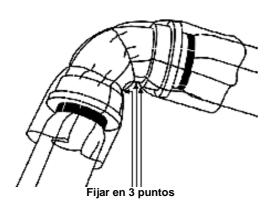

- 1. Suelo
- 2. Manga de junta

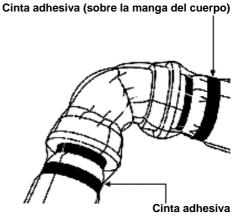
COLOCACIÓN DE LA MANGA EN LA JUNTA

Junta Travada JTE y JM


- 1. Manga de caño
- 2. Ligadura plastificada
- 3. Manga de junta
- 4. Cinta adhesiva

Junta JGS yJTI


- 1. Manga de caño
- 2. Ligadura
- 3. Manga de junta
- 4. Cinta adhesiva


- Colocar la manga de la junta en la zona espiga-enchufe dejando para ello una abertura en el fondo de la zanja que facilite la colocación de la manga, de la cinta adhesiva y del alambre plastificado.
- Doblar la manga de la junta, ajustándola lo mejor posible a ambos lados de la junta de manera que cubra las mangas del cuerpo, anterior y posterior (el pliegue de recubrimiento siempre debe hacerse en la generatriz superior).
- Se debe ligar con alambre plastificado, lo más próximo posible a la contrabrida cuando fuera una cañeria de junta elástica JTE o JM y lo más próximo al canto del enchufe cuando la junta sea JGS o JTI
- Fijar sus extremos sobre la manga del cuerpo con cinta adhesiva, en toda su circunferencia
- El montaje sucesivo de las mangas tanto del cuerpo como de junta debe formar una protección continua.

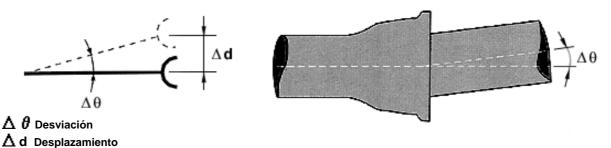
COLOCACIÓN DE LA MANGA EN LAS PIEZAS ESPECIALES

Utilizar la misma manga de polietileno para proteger las piezas especiales. Dependiendo de la forma de la pieza, será necesario efectuar recortes en la manga para adecuarla al perfil de la pieza y lograr una mayor estanqueidad. La colocación debe efectuarse respectando las recomendaciones anteriores.

CANTIDADES Y DIMENSIONES

DN	Manga (ancho)		olastificado caño)	Cinta ad (por d	dhesiva caño)
	m	Cantidad	m	Cantidad	m
80	0,70	4	2,00	4	1,60
100	0,70	4	2,30	4	1,80
150	1,00	4	2,90	4	2,60
200	1,30	4	3,60	4	3,40
250	1,50	4	4,20	4	4,40
300	1,50	4	4,90	4	5,20
350	1,70	4	5,60	4	6,00
400	2,00	4	6,20	4	6,80
450	2,20	4	7,60	4	7,60
500	2,40	4	8,30	4	8,40
600	2,80	4	9,60	4	10,00
700	3,30	4	13,60	4	11,60
800	3,70	4	15,30	4	13,20
900	4,20	4	16,90	4	14,80
1000	4,70	4	18,50	4	16,40
1200	5,60	6	26,10	4	19,80

DESVIACIÓN ANGULAR


Las juntas con enchufe **Saint-Gobain Canalização** admiten una cierta desviación angular. Además de algunas ventajas en términos de colocación o absorción de movimientos del terreno, la desviación angular permite realizar curvas de gran rádio sin utilizar piezas especiales, así como ajustarse a ciertas modificaciones del trazado.

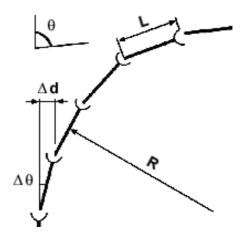
Vea También:

Desviación admitida en la colocación

Juntas JGS, JTI, JTE, JM y JPK

DESVIACIÓN ADMITIDA EN LA COLOCACIÓN

JUNTAS JGS, JTI, JTE, JM y JPK


DN	Desviación angular admitida en la instalación	Largo de los caños (m)	Radio de curvatura R (m)	Desplazamiento Ad (cm)
80 a150	5°	6	69	52
200 a 300	4°	6	86	42
350 a 600	3°	6	115	32
	-	7	200	25
700 a 800	2°	1	267	19
900 a 1200	1° 30'	7		-
1200 a 1800	1° 30'	8	305	21
1400 a 1600*	1° *	8	458	14
* Junta Pamlock			-	

Ciertas curvas de gran radio pueden ser realizadas fácilmente con sucesivas desviaciones de las juntas con enchufe. En este caso, se debe efectuar primero el montaje de los caños los que deben estar bien alineados y nivelados para, a continuación, después de haber finalizado por completo el montaje de la junta, proceder a realizar la desviación.

Número de caños necesarios para el cambio de dirección:

$$N = \theta \div \Delta \theta$$

■ Longitud del cambio de dirección C = N x L, donde:

∆d: desplazamiento del caño (m)

L: longitud del caño (m)

: ángulo del cambio de dirección (en grados)

△ : desviación de la junta (en grados)

C: longitud del cambio de dirección (en m).

PASTA LUBRICANTE

La estanqueidad de la juntas automáticas se logra, en el momento del montaje, por la compresión radial del aro de goma. Esta operación requiere el uso de una pasta lubricante, destinada a disminuir el roce entre el caño y el aro de goma.

Vea También:

- M Acondicionado
- **Procedimiento**
- Ejemplo de la aplicación en el aro de goma para juntas JGS y JTI
- Característica de la pasta lubricante
- Cantidad

ACONDICIONADO

La pasta lubricante viene envasada en latas de plástico de 0,9 kg, en las cuales están indicadas las recomendaciones para su uso.

PROCEDIMIENTO

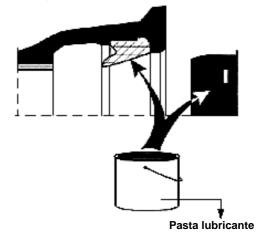
Comprobar previamente que la punta del caño esté limpia y a existéncia de chaflán. De no ser así, se debe efectuar el chaflán y la limpieza antes de aplicar el lubricante. Ver **Corte de los Caños.**

EJEMPLO DE APLICACIÓN EN EL ARO DE GOMA PARA JUNTAS JGS Y JTI

La pasta se aplica sobre la superficie visible del aro de goma de la junta colocado en su alojamiento y en la espiga del caño.

CARACTERÍSTICAS DE LA PASTA LUBRICANTE

A pasta lubricante:


- disminuye el roce durante el enchufado,
- se aplica fácilmente,
- es soluble en el agua,
- puede ser utilizada en una amplia gama de temperaturas.

Su composición:

- no modifica las cualidades del agua potable,
- impide el crecimiento bacteriano.

La pasta lubricante que provee Saint-Gobain Canalização, satisface las exigencias de salubridad; es soluble en el agua y no afecta las características de potabilidad.

Aceite, vaselina o grasa no deberán ser utilizados, pues con el paso del tiempo dañan la goma.

CANTIDAD

La siguiente tabla indica la cantidad aproximada de juntas a lubricar por cada lata de pasta lubricante

DN	Número de juntas	DN	Número de juntas
80	82	450	17
100	69	500	15
150	53	600	12
200	43	700	11
250	33	800	10
300	27	900	9
350	23	1000	8
400	20	1200	5

MONTAJE DE LA JUNTA JGS

El montaje de la junta JGS se realiza por la introducción de la espiga en el enchufe. La realización de esta junta es sencilla y rápida.

Vea También:

Limpieza

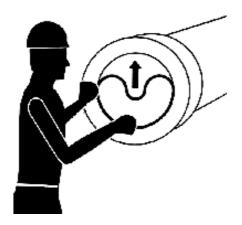
Colocación del aro de goma

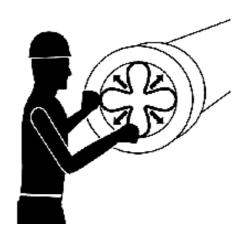
Control de la posición del aro de goma

Marcado de la profundidad de enchufado

M Lubricación

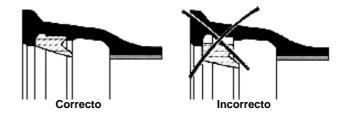
Ensamblaje

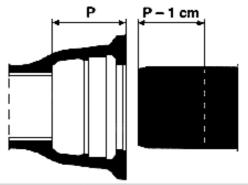

LIMPIEZA


- Limpiar cuidadosamente el interior del enchufe del caño y la espiga.
- Dar especial atención al alojamiento del aro de goma de la junta (eliminar cualquier depósito de arena, tierra...)
- Limpiar la espiga del caño a ensamblar así como el propio aro de goma.
- Confirmar la existencia de chaflán, y el buen estado de la espiga. En caso de corte, realizar nuevamente el chaflán.

COLOCACIÓN DEL ARO DE GOMA

La colocación del aro de goma de la junta debe ser efectuado fuera de la zanja.


- Verificar el estado del aro de goma e introducirlo en su alojamiento, dándole la forma de un corazón, con los labios girados hacia el fondo del enchufe.
- Para los grandes diámetros, es preferible deformar el aro de goma en forma de cruz para colocarlo.
- Ejercer un esfuerzo radial en el aro de goma al nivel de la curva de corazón con el fin de aplicarlo a fondo en su alojamiento.


CONTROL DE LA POSICIÓN DEL ARO DE GOMA

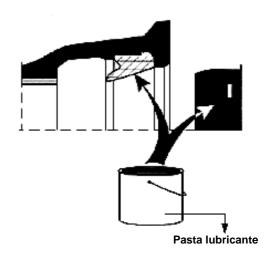
 Comprobar que el aro de goma de la junta esté correctamente aplicado en toda su periferia.

MARCADO DE LA PROFUNDIDAD DE ENCHUFADO

Si no hay ningún marcado en la espiga, trazar una marca a una distancia del extremo de la espiga igual a la profundidad de enchufe P, menos 1cm.

DN	P	DN	P
DN	mm	DN	mm
80	92,5	450	115,5
100	94,5	500	117,5
150	100,5	600	122,5
200	106,5	700	147,5
250	105,5	800	147,5
300	107,5	900	147,5
350	110,5	1000	157,5
400	112,5	1200	167,5

LUBRICACIÓN

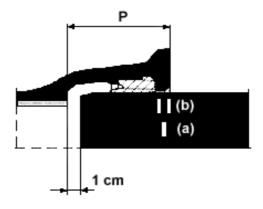

Aplicar una capa de pasta lubricante sobre:

- la superficie visible del aro de goma de la junta,
- el chaflán y la espiga del caño.

La pasta lubricante se debe colocar con pincel.

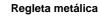
ENSAMBLAJE

- Centrar la espiga con el enchufe, manteniendo el caño en esta posición.
- Introducir la espiga en el enchufe, comprobando el alineamiento de los elementos a ensamblar.
- Desviar si fuera necesario, dentro de los límites establecidos. Vea Montage (Aparatos) y Desviación Angular.



a. Caso de los caños con marca hecha en la obra

Introducir la espiga hasta que la marca llegue al canto o espejo del enchufe. No sobrepasar de esta posición.


b. Caso de los caños con marca hecha en fábrica

Introducir la espiga hasta que la primera marca desaparezca dentro del enchufe. La segunda marca debe permanecer visible después del ensamblado.

Control

Comprobar que el aro de goma esté colocado correctamente en su alojamiento, introduciendo, en el espacio anular comprendido entre la espiga y la entrada del enchufe, el extremo de una regleta metálica que se introducirá a tope contra el aro de goma: en todos los puntos del circulo del caño, la regleta debe penetrar hasta la misma profundidad.

MONTAJE DE LA JUNTA JTI

El montaje de la junta se realiza por la simple introducción de la espiga en el enchufe donde está colocado un aro de goma con insertos metalicos de fijación o garras metálicas. El montaje de esta junta es sencilla y rápida. La junta JTI no puede ser desmontada después de haber sido sometida a la tración y lo presión. Caso necesário consulte la **Saint-Gobain Canalização** para desmontaje de la junta depues de la puesta en presión.

Vea También:

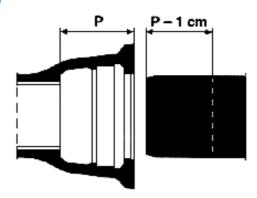
- Colocación del aro de goma
- Ontrol de la posición del aro de goma
- Marcado de la profundidad de enchufado
- **M** Lubricación
- **Ensamblaje**
- Desmontaje

LIMPIEZA

- Limpiar cuidadosamente el interior del enchufe.
 Prestando especial atención al alojamiento del aro de goma de la junta (eliminar los residuos de tierra, arena...).
- Limpiar la espiga del caño a ensamblar así como el aro de goma.
- Comprobar la presencia del chaflán, así como el buen estado de la espiga. En caso de corte, es imperativo realizar un nuevo chaflán.

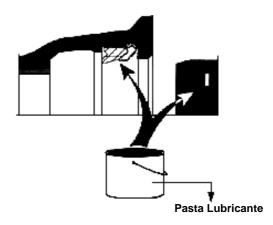
COLOCACIÓN DEL ARO DE GOMA

- La colocación del aro de goma de la junta, se realiza fuera de la zanja.
- Comprobar el estado del aro de goma e introducirlo en su alojamiento, dándole la forma de un corazón, con los labios dirigidos hacía el fondo del enchufe.
- Ejercer un esfuerzo radial sobre el aro en las partes deformadas, con el fin de aplicarlo a fondo en su alojamiento.


CONTROL DE LA POSICIÓN DEL ARO DE GOMA

 Comprobar que el aro de goma de la junta está correctamente aplicado en toda su periferia.

MARCADO DE LA PROFUNDIDAD DE ENCHUFADO


DN	Р	DN	Р	
DIN	mm	DIN	mm	
80	92,5	200	106,5	
100	94,5	250	105,5	
150	100,5	300	107,5	

LUBRICACIÓN

Aplicar una capa de pasta lubricante sobre:

- la superficie visible del aro de goma,
- el chaflán y la espiga hasta la marca.

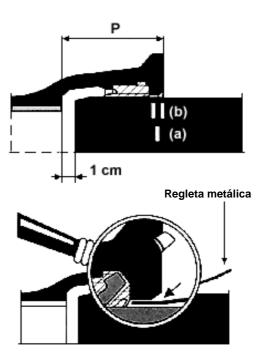
La pasta lubricante se debe colocar con pincel.

ENSAMBLAJE

- Centrar la espiga con el enchufe y mantener el caño en esta posición apoyándolo sobre dos calzas o tacos.
- Introducir la espiga en el enchufe comprobando el alineamiento de los elementos a ensamblar.
- Si es necesario, efectuar una desviación angular, ésta debe hacerse después del ensamblado.

Vea Montaje (aparatos) y Desviación Angular.

a. Caso de los caños con marca hecha en la obra


Introducir la espiga hasta que la marca llegue al canto o espejo del enchufe. No sobrepasar esta posición.

b. Caso de los caños con marca hecha en fábrica

Introducir la espiga hasta que la primera marca desaparezca dentro del enchufe. La segunda marca debe permanecer visible después del ensamblado.

Control

Montada la junta, comprobar que el aro de elastómero esté colocado correctamente en su alojamiento, introduciendo, en el espacio anular comprendido entre la espiga y la entrada del enchufe, el extremo de una regleta metálica que se introducirá a tope contra el aro de goma de la junta: en todos los puntos de la círcunferencia del caño, la regleta debe penetrar hasta la misma profundidad.

DESMONTAJE

La junta JTI se puede desmontar antes de ser puesta en presión, mediante la ayuda del equipo de desmontaje específico. Consultar a **Saint-Gobain Canalização**.

Una vez puesta en presión o tracción, ya no es más desmontable.

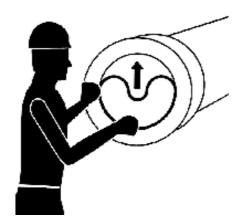
MONTAJE DE LA JUNTA JTE

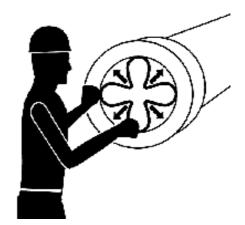

El montaje de la junta JTE se realiza mediante la introducción de la espiga en un enchufe JGS, aplicando una fuerza axial exterior, seguido de la colocación de un sistema de acerrojado constituído de un arandela metálica y una contrabrida con bulones. Si se trata de un caño cortado, el montaje requiere que previamente se realice el chaflán y el cordón de soldadura.

Vea También:

- **⋈** Limpieza
- M Inserción del aro de goma
- Ontrol de la posición del aro de goma
- Colocación del arandela metálica y de la contrabrida
- M Arandela metálica monobloque
- Marcado de la profundidad de enchufado
- **M** Lubricación
- **Enchufado**
- **◯** Control
- Posicionamiento de la arandela metálica
- Posicionamiento de la contrabrida

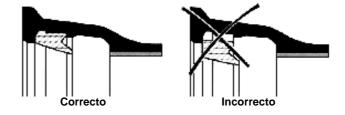
LIMPIEZA

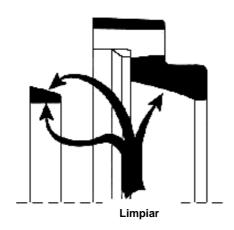

- Limpiar cuidadosamente la espiga y el interior del enchefe, especialmente el alojamiento del aro de goma (eliminar cualquier residuo de tierra, arena.. etc).
- Limpiar la espiga del caño a ensamblar así como el propio aro de goma.
- Comprobar la existencia del chaflán y del cordon de soldadura, así como el buen estado de la espiga. En caso de corte, realizar nuevamente el chaflán y el cordón de soldadura.

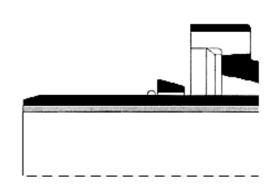


INSERCIÓN DEL ARO DE GOMA

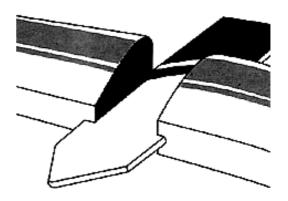
La colocación del aro de goma de la junta se realiza fuera de la zanja.


- Comprobar el estado del aro de goma y posicionarlo en su alojamiento dándole la forma de un corazón, con los labios dirigidos hacia el fondo del enchufe.
- En caso de grandes diámetros, es preferible deformar el aro de goma en cruz para colocarlo.
- Ejercer un esfuerzo radial sobre el aro de goma en las partes deformadas, con el fin de colocarlo en su alojamiento.

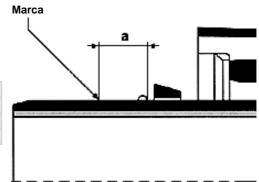

CONTROL DE LA POSICIÓN DEL ARO DE GOMA


 Comprobar que el aro de goma de la junta esté correctamente aplicado en toda su periferia.

COLOCACIÓN DEL ARANDELA METÁLICA Y DE LA CONTRABRIDA


- Limpiar cuidadosamente la arandela metálica y la contrabrida, principalmente en los lugares indicados en el esquema adjunto.
- Colocar primero la contrabrida y después la arandela metálica en el extremo de la espiga del caño, detrás del cordón de soldadura.

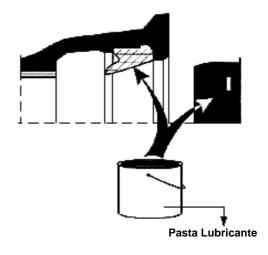
ARANDELA METÁLICA MONOBLOQUE


Como el diámetro interior de la arandela metálica es inferior al diámetro exterior del cordón de soldadura, es necesario abrirla mediante una cuña trapezoidal introducida en el alojamiento previsto.

MARCADO DE LA PROFUNDIDAD DE ENCHUFADO

Trazar, en la espiga del caño a colocar, una marca para la profundidad de enchufado a una distancia a del cordón de soldadura. El valor de a se indica en la tabla que sigue.

DN	a (mm)
300 a 500	30
600 a 1000	35
1200	25

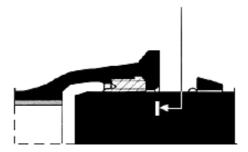


LUBRICACIÓN

Aplicar una capa de pasta lubricante:

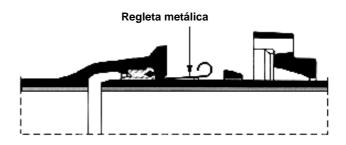
- en la superficie visible del aro de goma,
- en el chaflán y espiga del caño hasta la marca de profundidad del enchufado

La pasta lubricante debe ser aplicada con pincel.

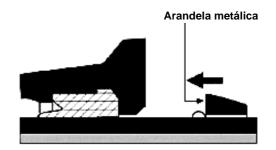


ENCHUFADO

- Centrar la espiga del caño en el enchufe y mantener el caño en esta posición, apoyándolo encima de dos calzas o tacos.
- Introducir la espiga del caño dentro del enchufe, conservando el alineamiento y nivelación de los elementos a ser montados.
- Encajar hasta que la marca de profundidad encuentre el fondo del enchufe. No sobrepasar esta posición.
- Si es necesario realizar una desviación angular, ésta debe hacerse después de la colocación de la contrabrida.

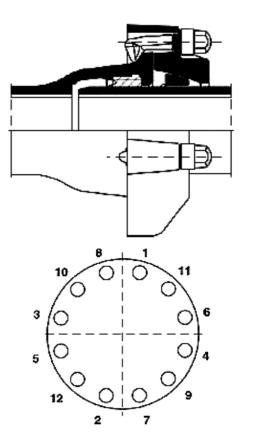

Vea Montaje (aparatos) y Desviación Angular.

Marca en la espiga del caño


CONTROL

Montada la junta, comprobar que el aro de goma está en posición correcta en su alojamiento, introduciendo en el espacio anular comprendido entre la espiga y la entrada del enchufe, el extremo de una regleta metálica, hasta que tope contra el aro de goma de la junta: en todos los puntos de la circunferencia del caño, la regleta debe penetrar hasta la misma profundidad.

POSICIONAMIENTO DE LA ARANDELA METÁLICA


Poner la arandela metálica en contacto con el cordón de soldadura, verificando que esté correctamente ubicada en toda su circunferencia.

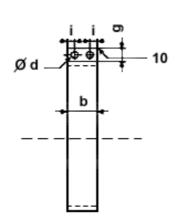
POSICIONAMIENTO DE LA CONTRABRIDA

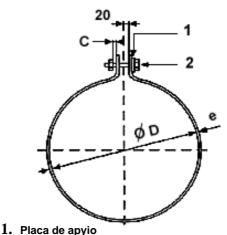
- Colocar la contrabrida en contacto con la arandela metálica y centrarla.
- Poner los bulones y apretar las tuercas con la mano hasta que estén en contacto con la contrabrida.
- Apretar las tuercas hasta que la contrabrida esté en contacto con el canto del enchufe (se nota fácilmente el contacto por el aumento muy rápido del torque de apriete). Las tuercas deben apretarse de forma gradual y alternada do mismo modo que se aprieta la rueda de un coche.

Durante el enchufado, los caños deben estar alineados. Después de finalizada la operación de montaje, es posible realizar una desviación angular, dentro de los límites admitidos. Vea **Desviación Angular**.

SOLDADURA (CORDÓN PARA ACERROJADO)

El sistema de acerrojado requiere un cordón de soldadura en la espiga de los caños, que se efectua en fábrica. En caso de corte, es preciso realizar este cordón de soldadura en la obra.


Vea También:

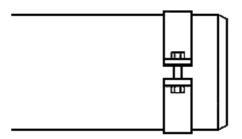

Material necesario

Procedimiento

MATERIAL NECESARIO

- Equipo de soldadura eléctrica; estático, rotativo o contínuo, capaz de dar 150 A como mínimo.
- Herramientas y accesorios para soldar, como: guantes, máscara, cepillo de acero, etc.
- Esmeriladora eléctrica o neumática.
- Electrodos ferro-níquel: (con un mínimo de 60% de níquel) Φ = 3,2 mm
- Anillo guía de cobre para la ejecución del cordón (según el DN), según características de la tabla siguiente:

2. Bulon d1 × I


		Anillo			Placa de apyio		yio Bulones		ılones	Masa							
DN	D	е	b	С	g	i	d	d	I	total							
	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg							
80	96	5	25							0,630							
100	116	5	25	8	40	12,5	9	8	80/50	0,700							
150	168	5	25	0	40	12,3	9	0	80/30	0,890							
200	220	5	25							1,100							
250	271	5	35							1,700							
300	323	5	35	8	8	Ω						1,900					
350	375	5	35				Q	Q	ρ	Q	Q	8 40	40	12,5	9	8	80/50
400	477	5	35			40	12,3	9	0	80/30	2,600						
450	477	5	35								2,700						
500	528	5	35								3,200						
600	631	5	50							4,900							
700	734	5	50							5,600							
800	837	5	50	8	40	12,5	9	8	80/50	6,400							
900	940	5	50	0	40	12,5	9	0	80/30	7,000							
1000	1043	5	50							7,800							
1200	1249	5	50							9,200							

PROCEDIMIENTO

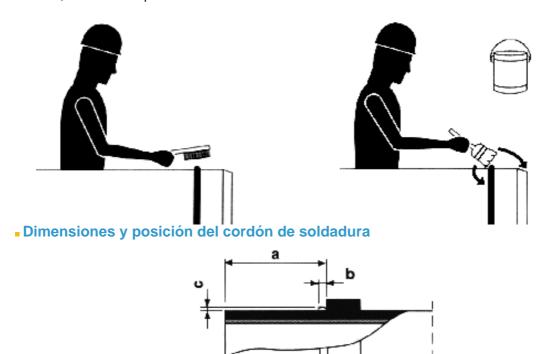
Preparación de la superficie para la soldadura

Con ayuda del anillo de cobre, ubicar la posición del cordón de soldadura en el extremo del caño.

- Desplazar el anillo de cobre.
- Esmerilar cuidadosamente la zona donde se depositará el cordón de soldadura en un ancho de 25 mm.
- El esmerilado no debe afectar el espesor del caño.
- Colocar y apretar el anillo guía de cobre antes del lugar de ubicación del cordón de soldadura respetando la cota o dimensión a. (vea tabla Dimensiones y posición del cordón de soldadura en la próxima página)

Este anillo debe montarse en la superficie exterior del caño. De ser preciso, martillar el anillo ligeramente para obtener una buena fijación.

- Realización del cordón de soldadura
- Reglaje de la máquina de soldadura: 95 a 105 A
- Ejecutar el cordón de soldadura contra el anillo guía de cobre para obtener una cara recta y ortogonal con la superficie del caño.
- El cordón debe ser ejecutado por un soldador experimentado, en una sola pasada, con electrodos de 3,2 mm de diámetro.
- Es importante respetar las dimensiones b y c del cordón de soldadura (vea tabla Dimensiones y posición del cordón de soldadura en la próxima página)



- Trabajar preferentemente entre las marcas A y B . Conservar esta zona de trabajo haciendo girar el caño.

- Reparación del revestimiento exterior

El revestimiento exterior debe ser reconstituido alrededor del cordón de soldadura. Vea Reparación del revestimiento exterior.

En el cordón de soldadura, después de limpiado y cepillado, aplicar pintura bituminosa de base asfáltica, mediante un pincel.

		а	Cantidad da		b		0					
DN	Nominal	Tolerancia	Cantidad de pasadas	DN	Nominal	Tolerancia	Cantidad de pasadas					
	mm	mm	pasauas		mm	mm	pasadas					
-	-			300 y 350	7							
-	-	1		400 a 800	8	±3	1					
-	-	1		900 a 1200	9							
-	-											
-	-											
300	115											
350	114		1	±3 1 b	1	1	1	1	1			
400	113	13										
450	120	±3										
500	125				b	Cantidad de						
600	135				DN	Nominal	Tolerancia	pasadas				
700	148						mm	mm	pasauas			
800	150			300	3							
900	155			350 a 450	3,5	±3	1					
1000	155]		500 a 1 000	4		'					
1200	165	1		1200	6	-						

MONTAJE DE LA JUNTA MECÁNICA

El montaje de la junta mecánica se realiza por introducción de la espiga dentro del enchufe y a continuación, por la compresión de un aro de goma mediante una contrabrida y bulones. La realización de esta junta es sencilla, rápida y no requiere ninguna fuerza para el enchufado.

Vea También:

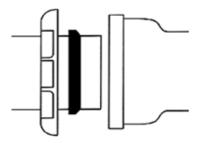
Limpieza

Colocación de la contrabrida y del aro de goma

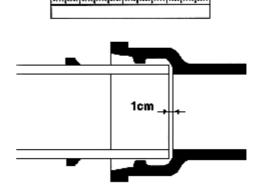
Enchufado

Montaje

Apriete de los bulones


LIMPIEZA

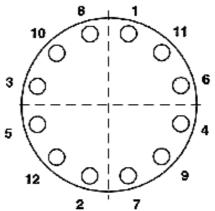
- Limpiar cuidadosamente el interior del enchufe del caño, prestando especial atención a la limpieza del alojamiento del aro de goma (eliminar la tierra, arena...)
- Limpiar la espiga del caño a ensamblar así como el aro de goma.
- Comprobar el buen estado de la espiga.


COLOCACIÓN DE LA CONTRABRIDA Y DEL ARO DE GOMA

 Colocar la contrabrida en la espiga, luego el aro de goma de la junta (con la punta mirando el extremo de la espiga).

ENCHUFADO

 Introducir la espiga hasta el fondo del enchufe, manteniendo el alineamiento de las piezas a ensamblar, y después, retirarla 1cm aproximadamente.


MONTAJE

- Deslizar el aro de goma de la junta sobre el caño, hasta su alojamiento; y poner la contrabrida en contacto con el aro de goma.
- Colocar los bulones y apretar las tuercas con la mano hasta su contacto con la contrabrida.
- Apretar las tuercas, de acuerdo a la tabla de apriete.
- Desviar, si es necesario hacerlo, teniendo en cuenta, el limite de angulo admisible. Vea
 Desviación Angular.

- Comprobar la posición de la contrabrida, centrarla y apretar las tuercas con la llave, operando en el orden de los números del esquema adjunto, como se hace con las tuercas de un coche.
- Una vez realizadas las pruebas hidráulicas, es indispensable comprobar el apriete de los bulones y, de ser necesario, apretarlos nuevamente.
- Para el caso de grandes diámetros, empezar el apriete de los bulones cuando el caño y la pieza a montar están todavía colgados del gancho del aparato de izado. De esta manera, la espiga estara perfectamente centrada en el enchufe y el aro de goma se colocará correctamente en su alojamiento.

Apriete de los bulones:

Diámetro del Bulón mm	Torque de apriete m. daN
15	10
18	10
20	12
24	15

MONTAJE DE LA JUNTA CON BRIDAS

La junta con bridas permite un facil montaje y desmontaje de una cañeria (reparación, inspección, mantenimiento...).

Es importante respetar el orden y el torque de apriete de los bulones y no poner la cañeria en tracción cuando se realiza el apriete de los bulones.

Vea También:

Procedimiento

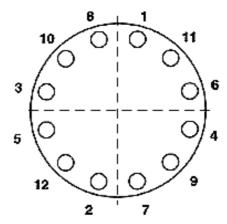
PROCEDIMIENTO

Limpieza y alineamiento de las bridas

- Controlar el aspecto y la limpieza de las caras de las bridas y de la arandela de junta.
- Alinear las piezas a montar.
- Dejar entre las dos bridas a ensamblar un pequeño espacio para permitir el paso de la arandela de junta, la cual en función de la presión de servicio puede ser de goma o de amianto grafitado.

- Posicionamiento de la arandela

Centrar la arandela entre los resaltes de las dos bridas:



Dependiendo del tipo de arandela utilizada y la presión máxima de servicio (PN), se recomienda respetar los siguientes valores de apriete de los bulones:

	Aran	delas	
	Goma	Amianto	grafitado
DN	PN 10	PN 16	PN 25
	m. daN	m. daN	m. daN
80	7,0	7,5	9,0
100	8,0	8,0	13,5
150	12,0	13,5	23,0
200	14,0	13,0	22,0
250	13,0	18,0	33,5
300	14,5	21,0	32,5
350	13,5	20,0	46,0
400	18,5	27,0	61,5
450	18,0	26,0	58,0
500	19,5	34,5	69,5
600	27,5	50,5	101,0
700	29,5	63,5	116,0
800	40,5	87,0	169,0
900	41,5	90,0	175,5
1000	53,5	117,5	242,0
1200	69,5	163,0	292,0

APRIETE DE LOS BULONES

Apretar las tuercas, operando en el orden de los números del esquema adjunto, como se hace con las tuercas de un coche.

PRUEBA EN LA OBRA

La prueba en la obra permite comprobar la estanqueidad y la estabilidad de la cañeria antes de su puesta en servicio.

La prueba hidráulica condiciona la recepción de las obras . Debe efectuarse lo antes posible después de la colocación, siguiendo las instrucciones de la norma NBR 9650. Toda la cañeria debe ser probada, pudiendo, la prueba, ser realizada por tramos.

Vea También:

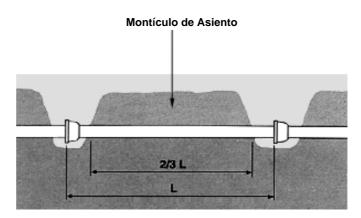
1. Longitud del tramo

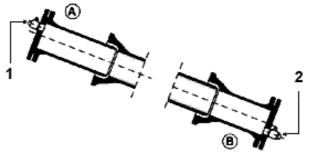
2. Preparación de la prueba

3. Llenado de la cañeria

4. Puesta en presión

5. Duración

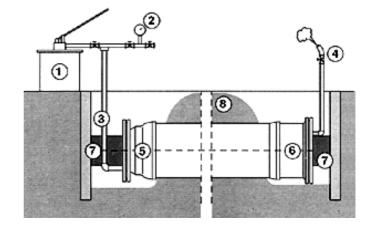

6. Puesta en servicio


1. LONGITUD DEL TRAMO

La longitud de los tramos a probar depende de la configuración del trazado. Cuanto mayor sea el tramo de prueba, más difícil resultará la localización de eventuales fugas. En la práctica, conviene comenzar por tramos de hasta 500m, y despues continuar con longitudes mayores. Las ESPECIFICACIONES TÉCNICAS dan precisiones al respecto.

2. PREPARACIÓN DE LA PRUEBA

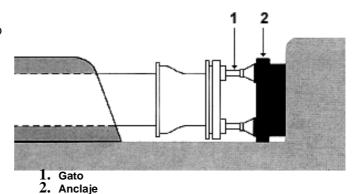
- Para evitar cualquier movimiento de la cañeria bajo el efecto de la presión del agua, se disponen montículos de tierra sobre la parte central de cada caño, dejando las juntas descubiertas. De acuerdo con lo estipulado en el proyecto, todos los anclajes necesarios deberán haber sido ejecutados antes de la prueba.
- Obturar los extremos del tramo a probar con bridas ciegas (A y B) equipadas con válvulas, para el llenado de agua y salida del aire.
- Evaluar los esfuerzos hidráulicos ejercidos en los extremos de la cañeria y colocar un sistema de topes o anclajes correctamente dimensionados. Por ejemplo; maderos empotrados transversalmente en la zanja o un dispositivo equivalente (como pared de tablestacas).



Extremidad superior (A)
1. Purga de aire
Extremidad inferior (B)
2. Bomba de prueba

Preparación de la prueba

- 1. Bomba de prueba
- 2. Manómetro 3. Conexión
- 4. Purga de aire
- 5. Pieza de extremo bajo
- 6. Pieza de extremo alto
- 7. Sistema de anclaje
- 8. Montículo de tierra


- Evitar el apoyo sobre el extremo de la cañeria colocada y ya sometida a la prueba hidráulica.
- Los extremos del tramo objeto del ensayo pueden desplazarse lateralmente bajo el efecto de la presión, por lo cual hay que prever topes laterales.

3. LLENADO DE LA CAÑERIA

La cañeria se llena lentamente, a partir de los puntos bajos, ya que es importante obtener una purga completa del aire en los diferentes puntos altos del tramo antes de someterla a presión.

La puesta en presión ejerce una fuerza en los topes que tienden a desplazarse. Para restablecer estas posiciones iniciales, es conveniente utilizar gatos que permitan un ajuste preciso. Si se trata de una cañeria de bombeo, utilizar bombas para llenarla por el punto bajo, a caudal limitado.

Tratandose de un sifón de gran diámetro, es preferible llenarlo por el punto bajo utilizando una cañeria de pequeño diámetro. El agua va subiendo de manera progresiva en las dos ramas sin crear turbulencias. Dentro de lo posible, esperar 24 horas antes de proceder a la prueba de presión, con el fin de que la cañeria alcance su estado de equilibrio.

- Comprobación del Ilenado

El llenado de la canalización exige que todo el aire haya sido evacuado. Ya se ha señalado la extrema importancia de esta operación.

- Comprobar el funcionamiento dee las ventosas.
- Verificar que se abren las válvulas colocadas en la base de estos aparatos.
- Utilizar las válvulas de vaciado para cerciorarse de que el agua llega de manera
- progresiva.

4. PUESTA EN PRESIÓN

Verificar previamente que la presión de prueba tiene un valor compatible con el que puede soportar cada uno de los elementos constitutivos del tramo a probar. De lo contrario, aislarlos.

La presión debe subir lentamente, con el fin de poder vigilar los topes y el ajuste de los gatos. La prueba de presión debe evidenciar los eventuales defectos de estanqueidad a nivel de las juntas, y también permitir un control definitivo de la cañeria en caso de incidentes ocurridos durante el transporte y la colocación.

Para las cañerias de hierro fundido dúctil, son usuales las siguientes presiones de prueba:

Cañerias de aducción y distribución por gravedad

La presión de prueba del tramo de la cañeria es:

- 1,5 veces la presión máxima admisible (PMA), cuando esta no supera 1,0 MPa, y nunca debe ser inferior a 0,4 MPa.
- la presión máxima admisible (PMA) del tramo, aumentada de 0,5 MPa, cuando esta es superior a 1,0 MPa.

Cañerias de bombeo

La presión de prueba debe ser como máximo igual a las presiones de prueba admisibles (PEA), en acuerdo con cada elemento de la cañeria y el tipo de junta.

En todos los casos, la presión no será superior a los valores máximos indicados por el fabricante para cada uno de los componentes de la cañeria.

Vea Presión (Terminologia) y Presiones Máximas Admisibles.

5. DURACIÓN

El tiempo de duración de la prueba de presión debe ser recomendado en el proyecto. Caso no haya recomendación, utilizar los valores indicados en la tabla siguiente. Durante este tiempo no se permitirá una disminución de presión mayor a 0,02 MPa.

DN	Duración (h)
hasta 200	3
250 a 400	6
450 a 700	18
mayor de 700	24

6. PUESTA EN SERVICIO

- Vaciar la cañeria, retirar los equipos de prueba y conectar el tramo.
- Lavar correctamente la cañeria para eliminar piedras o tierra que hayan podido entrar en la cañeria en el momento de ser instalada. Si se trata de una cañeria de agua potable, desinfectarla antes de ponerla en servicio.

REPARACIÓN Y MANTENIMIENTO

El buen desempeño de una cañeria es relacionado, muchas veces, a acciones de mantenimiento preventivas y correctivas. Estas acciones implican, generalmente, en la sustitución de elementos de la cañeria. **Saint-Gobain Canalização** ofrece una amplia gama de accesorios para reparación y mantenimiento, ante diversas situaciones, en que fuera necesario realizar uniones espiga-espiga o espiga-brida.

Vea También:

Selección de la pieza

Unión de dos espigas

Unión de una brida a espiga

Procedimiento

SELECCIÓN DE LA PIEZA

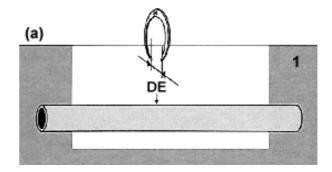
La selección de la pieza es función:

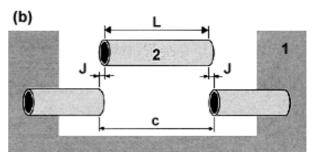
- de la unión a realizar,
- del diámetro externo de la cañeria,
- de la tolerancia de los elementos a unir.

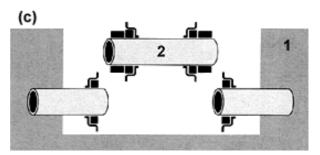
Vea Caños, piezas especiales y accesorios para dimensiones y tolerancias.

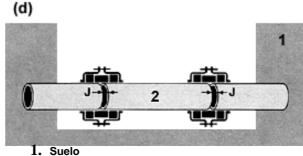
UNIÓN DE DOS ESPIGAS

Características del Accesorio Util			
Posibilidad de Unión	DN	Tipo de Accesorio	Esquema del Montaje
Espigas de caños de hierro fundido dúctil (junta JGS) - NBR 13747 Espigas hierro fundido centrifugado para cañería a presión con junta elástica - NBR 7663 Espigas - NBR 7661 (junta de plomo) Espigas de caños de PVC PBA Espigas de caños de PVC DEFoFo Espigas de caños de acero Espigas de caños de asbesto-cemento	80 a 300	Ultralink	
Espigas de caños según NBR 13747 Espigas de caños según NBR 7663	80 a 600	Junta Gibault	


UNIÓN DE UNA BRIDA A ESPIGA


Características del Accesorio Utilizado			
Posibilidad de Unión	DN	Tipo de Accesorio	Esquema de Montaje
Espigas de caños de hierro fundido dúctil (junta JGS) - segun NBR 13747 Espigas de caños de hierro fundido dúctil (junta JE) segun NBR 7663 Espigas - NBR 7661 (junta de plomo) Espigas de caños de PVC PBA Espigas de caños de PVC DEFoFo Espigas de caños de acero Espigas de caños de asbesto-cemento		Ultraquick	


PROCEDIMIENTO


El procedimiento a seguir es el mismo para el empleo de Ultralink, y de la Junta Gibault. Por semejanza puede usarse para la Ultraquick.

- (a) Después de excavar el lugar y limpiar la cañeria, verificar su diámetro externo.
 Elegir en función del diámetro externo, la pieza que mejor se adapte para efectuar la tarea (ver tablas precedentes).
- (b) Cortar la cañeria existente. (vea Corte de los Caños). La longitud de la parte de cañeria a ser retirada debe ser superior la longitud de los accesorios escogidos para efectuar la reparación
- (c) Colocar el nuevo segmento de cañeria.
 Verificar su longitud antes del corte UU, de acuerdo a la tolerancia admisible de montaje del accesorio (J). Longitud del corte UU = C 2 x J
- (d) Ubicar el corte UU con los accesorios alineándolo con las puntas a unir. Colocar los accesorios repartiendo las tolerancias admisibles. Juntar cada uno de los componentes y colocar los bulones.
 Verificar la correcta posición de las piezas.

2. Sección UU

Observaciones:

- Verificar la estanqueidad de las cañerias despúes de puestas en presión.
- En las redes de agua potable todas las piezas deben ser desinfectadas antes del montaje.
- Para protejer las uniones, utilizar manga de polietileno o manga termo contráctil. Vea Manga de Polietileno (Instalación).

CAPÍTULO 4 - NORMAS TÉCNICAS:

NORMAS TÉCNICAS BRASILEÑAS

NBR

5647: Caños de PVC rígidos para cañerías y redes de agua.

5667: Hidrantes urbanos para incendio.

6314: Piezas de conexión de cobre fundidas en arena - Especificación.

6916: Hierro fundido nodular o hierro fundido con grafito esferoidal - Especificación.7560: Caños de hierro fundido dúctil centrifugado con bridas roscadas o soldadas.

7661/ Caños de hierro fundido centrifugado, de espiga y enchufe, para líquidos bajo presión,

EB 43: con junta elástica.

7663/ Caño de hierro fundido dúctil centrifugado para cañería bajo presión.

EB 303:

7665: Sistemas para aducción y distribuição del agua - Caño de PVC DEFoFo con junta

elástica - Especificación.

7674: Junta elástica para caños y piezas especiales de hierro fundido dúctil.

7675: Piezas especiales de hierro fundido dúctil.

7676: Aro de goma para junta elástica y mecánica de caños y piezas especiales de hierro

fundido - Tipos JE, JM y JE265 - Especificación.

7677: Junta mecánica para piezas especiales de hierro fundido dúctil.

Revestimientos de mortero de cemento en caño de hierro fundido dúctil.Verificación de la estanqueidad en la instalación de cañerías y redes de agua.

11827: Revestimiento exterior de zinc en caños de hierro fundido dúctil...

12430: Vályula esclusa en hierro fundido nodular.

Aplicación de protección para manga de polietileno para cañerías de hierro fundido

dúctil.

Junta elástica para caños y piezas especiales de hierro fundido dúctil tipo JE2GS -

Especificación.

NORMAS TÉCNICAS INTERNACIONALES

ANSI API ASTM AWWA DIN ISO

ANSI

A 21.50: Thickness design of ductile-iron pipe.
B 16.1: Cast iron pipe flanges and flanged fittings.
B 16.5: Steel pipe flanges, flanged valves and fittings.

API

Check valves: wafer, wafer-lug and double flanged type.Butterfly valves: double flanged, lug and wafer-type.

ASTM

A 240: Standard specification for heat-resisting chromium and chromium-nickel stainless steel

plate, sheet and strip for pressure vessels.

A 276: Standard specification for stainless steel bars and shapes.

A 351: Standard specification for castings, austenitic, austenitic-ferritic (duplex), for pressure -

Containing parts.

A 536: Standard specification for ductile iron castings.

B 61: Standard specification for steam or valve bronze castings.

B 62: Standard specification for composition bronze or ounce metal castings.

B 147: Standard specification for high-strength yellow brass (manganese bronze) and leaded

high-strength yellow brass (leaded manganese bronze) sand castings.

B 148: Standard specification for aluminum-bronze sand castings.

D 2000: Standard classification system for rubber product in automotive applications.

D 2487: Standard classification of soils for engineering purposes (unified soil classification system)

AWWA

C 150: Thickness design of ductile-iron pipe.

C 207: Steel pipe flanges for water works service - sizes 4 in through 144 in.

C 501: Cast iron sluice gates.

C 504: Rubber-seated butterfly valves for water supply service.

DIN

2532: Cast iron flanges; nominal pressure 10.

ISO

2531: Ductile iron pipes, fittings and accessories and their joints for water or gas applications

Ductile iron pipes for pressure and non-pressure pipelines-centrifugal cement mortar

lining - General requirements.

Rubber seals - Joint rings for water supply, drainage and sewerage pipelines -

Specification for materials.

Metal valves for use in flanged pipe systems - Face-to-face and centre-to-face

dimensions.

8179-1: Ductile iron pipes - external zinc coating - Part 1: Metallic zinc with finishing layer.8179-2: Ductile iron pipes - external zinc coating - Part 2: Zinc rich paint with finishing layer.

8180: Ductile iron pipes - Polyethylene sleeving.

10803: Design method for ductile iron pipes.

CAPÍTULO 5 - CONVERCIÓN DE UNIDADES:

Unidades de medidas del Sistema Internacional - SI

Unidades básicas

Unidades suplementarias

Unidades derivadas

Unidades Básicas

Magnitud	Nome da Unidade Básica no SI	Símbolo
Longitud	metro	m
Masa	kilogramo	kg
Tiempo	segundo	S
Corriente eléctrica	amperio	А
Temperatura termodinámica	kelvin	K
Cantidade de materia	mol	mol
Intensidad luminosa	candela	cd

Unidades Suplementarias

Magnitud	Nombre de la Unidad SI de Base	Símbolo
Ángulo plano	radian	rad
Ángulo sólido	esterorradián	sr

Unidades Derivadas

Magnitud	Nombre de la Unidad SI Derivada	Símbolo	Equivalencias
Frecuencia	hertz	Hz	1 Hz = 1 s ⁻¹
Fuerza	newton	N	$1 N = 1 kg.m/s^2$
Presión, tensión mecanica	pascal	Pa	1 Pa = 1 N/m ²
Energía, trabajo, cantidad de calor	julio	J	1 J = 1 N.m
Potencia	vatio	W	1 W = 1 J/s
Carga eléctrica	culombio	С	1 C = 1 A.s
Potencial eléctrico, diferencia de potencial, tensión eléctrica, fuerza electromotriz	voltio	V	1 V = 1 J/C
Capacidad eléctrica	farad	F	1 F = 1 C/V
Resistencia electrica	ohmio	Ω	1 Ω = 1 V/A
Conductancia electrica	siemens	S	1 S = Ω ⁻¹
Flujo de inducción magnética, flujo magnético	weber	Wb	1 Wb = 1 V.s
Densidad de flujo magnético, inducción magnética	tesia	T	$1 T = 1 Wb/m^2$
Inductancia	henrio	Н	1 H = 1 Wb/A
Flujo luminoso	lumen	lm	1 lm = 1cd.sr
Iluminancia	lux	lx	$1 \text{ lx} = 1 \text{ lm/m}^2$

CONVERSIÓN DE UNIDADES (TABLAS)

Unidades de medidas del Sistema Internacional - SI

Marea Area

Longitud

Flujo de masa

Area

Milímetro cuadrado	Centímetro cuadrado	Metro cuadrado	Pulgada cuadrada	Pie cuadrado	Yarda cuadrada
mm ²	cm ²	m ²	in ²	ft ²	yd ²
1	0,01	10 ⁻⁶	1,55 x 10 ⁻³	1,076 x 10 ⁻⁵	1,196 x 10 ⁻⁶
100	1	10 ⁻⁴	0,155	$1,076 \times 10^{-3}$	1,196 × 10 ⁻⁴
106	104	1	1550	10,764	1,196
645,16	6,4516	6,452 x10 ⁻⁴	1	$6,944 \times 10^{-3}$	7,716 × 10 ⁻⁴
92,903	929,03	0,093	144	1	0,111
836,127	8361,27	0,836	1296	9	1

Longitud

Milímetro	Centímetro	Metro	Pulgada	Pie	Yarda
mm	cm	m	in	ft	yd
1	0,1	0,001	0,0394	0,0033	0,0011
10	1	0,01	0,3937	0,0328	0,0103
1000	100	1	39,3701	3,2808	1,0936
25,4	2,540	0,0254	1	0,0833	0,0278
304,8	30,48	0,3048	12	1	0,3333
914,4	91,44	0,9144	36	3	1

Flujo de masa

kilogramo/segundo	Libra/segundo	kilogramo/hora	Libra/hora	Ton.britânica/hora	Tonelada/hora
kg/s	lb/s	kg/h	lb/h	ton/h	t/n
1	2,205	3600	7936,64	3,5431	3,6
0,454	1	1633	3600	1,607	1,633
2,78 × 10 ⁻⁴	6,1 2 × 10 ⁻⁴	1	2,205	9,84 × 10 ⁻⁴	0,001
1,26 × 10 ⁻⁴	2,78 × 10 ⁻⁴	0,454	1	$4,46 \times 10^{-4}$	4,54 × 10 ⁻⁴
0,282	0,622	1016	2240	1	1,016
0,278	0,612	1000	2204,6	0,9842	1

Unidades de medidas del Sistema Internacional - SI

∀

Fuerza Masa

Potencia Potencia

Fuerza

Newton	kilonewton	Kilograma-fuerza	libra-fuerza
N	kN	kgf	lbf
1	0,001	0,102	0,225
1000	1	101,97	224,81
9,807	0,0098	1	2,205
4,448	0,0044	0,454	1

Masa

kilograma	Libra	Hundred Weight	Tonelada	Tonelada britânica	Tonelada Americana
kg	lb	cwt	cwt ton UKton		shton
1	2,205	0,0197	0,001	9,84 × 10 ⁻⁴	0,0011
0,454	1	0,0089	$4,54 \times 10^{-4}$	$4,46 \times 10^{-4}$	5 × 10 ⁻⁴
50,802	112	1	0,0508	0,05	0,056
1000	2204,6	19,684	1	0,9842	1,1023
1016	2240	20	1,0161	1	1,12
907,2	2000	17,857	0,9072	0,8929	1

Potencia

Watt	kilograma-fuerza metro por segundo	Caballo-vapor	Pie-libra-fuerza por segundo	Caballo-vapor (americano)
W	kgf m/s	CV	ft.lbf/s	hp
1	0,102	0,00136	0,738	0,0013
9,806	1	0,0133	7,233	0,0131
735,5	75	1	542,476	0,9863
1,356	0,138	$1,84 \times 10^{-3}$	1	1,82 × 10 ⁻³
745,70	76,04	1 ,0139	550	1

Unidades de medidas do Sistema Internacional - SI

♥Pressão♥Vazão♥Velocidade

Pressão

Newton por Metro Quadrado	Milibar	Bar	Quilograma- força por Centímetro Quadrado	Libra por Polegada Quadrada	Pé de Coluna D'água	Metro de Coluna de Água	Milímetro de Coluna de Mercúrio	Polegada de Coluna de Mercúrio
N/m ²	mbar	bar	kgf/cm ²	lbf/in ²	ftH ₂ O	mH ₂ O	mmHg	inHg
1	0,01	10 ⁻⁵	1,02×10 ⁻⁵	1,45×10 ⁻⁴	3,3×10 ⁻⁴	1,02×10 ⁴	0,0075	2,95×10 ⁻⁴
100	1	0,001	1,02×10 ⁻³	0,0145	0,033	0,0102	0,75	0,029
105	1000	1	1,02	14,5	33,455	10,2	750,1	29,53
98067	980,7	0,981	1	14,22	32,808	10	735,6	28,96
6895	68,95	0,069	0,0703	1	2,307	0,703	51,71	2,036
2989	29,89	0,03	0,0305	0,433	1	0,305	22,49	0,883
9807	98,07	0,098	0,1	1,42	3,28	1	73,55	2,896
133,3	1,333	0,0013	0,0014	O,019	0,045	0,014	1	0,039
3386	33,86	0,0338	0,0345	0,491	1,133	0,345	25,4	1

A Unidade Pascal representa a pressão exercida por uma força de 1 Newton por metro quadrado de área (1 Pa N/m²) 1 atmosfera (1 atm) = 101325 pascals ou 1,01325 bar

Caudal

Litro por Segundo			Pie Cúbico por Hora	Pie Cúbico por Minuto		Galón Americano por Minuto
I/s	l/min	m³/h	ft ³ /h	ft ³ /min	Ukgal/min	USgal/min
1	60	3,6	127,133	2,1189	13,2	15,85
0,017	1	0,06	2,1189	0,0353	0,22	0,264
0,278	16,667	1	35,3147	0,5886	3,666	4,403
0,008	0,472	0,0283	1	0,0167	0,104	0,125
0,472	28,317	1,6990	60	1	6,229	7,480
0,076	4,546	0,2728	9,6326	1605	1	1,201
0,063	3,785	0,2271	8,0209	0,1337	0,833	1

Velocidad

Metro por Segundo	Pie por Segundo	Metro por Minuto	Pie por Segundo	kilômetro por Hora	Milla por Hora
m/s	ft/s	m/min	ft/min	km/h	mile/h
1	3,281	60	196,85	3,6	2,2369
0,305	1	18,288	60	1,0973	0,6818
0,017	0,055	1	3,281	0,06	0,0373
0,005	0,017	0,305	1	0,0183	0,01136
0,278	0,911	16,667	54,68	1	0,6214
0,447	1,467	26,822	88	1,6093	1

Unidades de medidas del Sistema Internacional - SI

Volumen

Volumen de líquidos

Trabajo, energía, cantidad de calor

Volumen

Milímetro Cúbico	Centímetro Cúbico	Metro Cúbico	Pulgada Cúbica	Pie Cúbico	Yarda Cúbica
mm ³	cm ³	m ³	in ³	ft ³	yd ³
1	0,001	10 ⁻⁹	6,1 × 10 ⁻⁵	3,531 × 10 ⁻⁸	1,308 × 10 ⁻⁹
1000	1	10-6	0,061	3,531 × 10 ⁻⁵	1,308 × 10 ⁻⁶
10 ⁻⁹	10	1	61024	35,31	1,308
16387	16,39	1,639 × 10 ⁻³	1	$5,787 \times 10^{-4}$	$2,143 \times 10^{-5}$
$2,832 \times 10^7$	2,832 × 10 ⁴	0,0283	1728	1	0,0370
$7,646 \times 10^8$	$7,646 \times 10^5$	0,7646	46656	27	1

Volumen de Líquidos

Metro Cúbico	Litro	Mililitro	Galón Ingles	Galón Americano	Pie Cúbico
m ³	I	ml	UKgal	USgal	ft ³
1	1000	10 ⁻⁶	220	264,2	35,3147
0,01	1	1000	0,22	0,2642	0,0353
10 ⁻⁶	0,001	1	2,2 × 10 ⁻⁴	2,642 × 10 ⁻⁴	$3,53 \times 10^{-5}$
0,00455	4,546	4546	1	1,201	0,1605
0,00378	3,785	3785	0,8327	1	0,1337
0,0283	28,317	28317	6,2288	7,4805	1

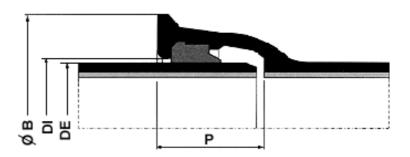
¹ barril americano = 42 galones americanos (medida para petróleo)

Trabajo, Energia, Cantidad de Calor

Julio	kilojulio	Megajulio	Libra-fuerza pie	Unidad del Calor Britanica	kilowatt-hora
J	kJ	MJ	ft lbf	B.t.u	kWh
1	0,001	10 ⁻⁶	0,737	9,48 × 10 ⁻⁴	$2,78 \times 10^{-7}$
1000	1	0,001	737,56	0,9478	$2,78 \times 10^{-4}$
106	1000	1	737562	947,82	0,2778
1,356	$1,36 \times 10^{-3}$	1,36 × 10 ⁻⁶	1	1,28 × 10 ⁻³	$3,77 \times 10^{-7}$
1055,1	1,0551	$1,05 \times 10^{-3}$	778,17	1	2,931 × 10 ⁻⁴
$3,6 \times 10^{6}$	3600	3,6	$2,65 \times 10^6$	3412,1	1

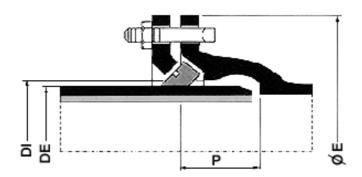
¹ Julio = 1 Newton . metro

¹ litro = $10^6 \text{ mm}^3 = 10 \text{ cm}^3 = 1 \text{ dm}^3$



CAPÍTULO 6 - DIMENSIONES DE LAS JUNTAS:

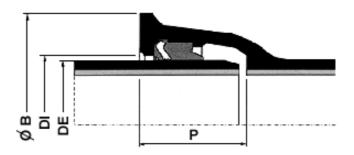
DIMENSIONES JUNTA ELÁSTICA - JGS



				Dimension	es y Masas
DN	DE	DI	Р	В	Masas del aro goma
	mm	mm	mm	mm	kg
80	98	101	92,5	168	0,14
100	118	121	94,5	189	0,20
150	170	173	100,5	243	0,29
200	222	225	106,5	296	0,38
250	274	277	105,5	353	0,50
300	326	329	107,5	410	0,71
350	378	381	110,5	465	0,90
400	429	432	112,5	517	1,10
450	480	483	115,5	575	1,32
500	532	535	117,5	630	1,54
600	635	638	122,5	739	2,16
700	738	741	147,5	863	2,87
800	842	845	147,5	974	3,67
900	945	948	147,5	1082	4,61
1000	1048	1051	157,5	1191	5,59
1200	1255	1258	167,5	1412	9,23
1400	1462	1465	245,0	1592	15,50
1500	1565	1568	265,0	1710	19,80
1600	1668	1671	265,0	1816	21,00
1800	1875	1878	275,0	2032	27,70
2000	2082	2085	290,0	2253	34,70

Utilización: caños clases K7, K9 y piezas especiales.

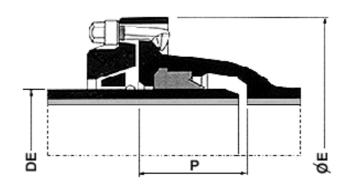
DIMENSIONES JUNTA MECÁNICA - JM



				Dimension	es y Masas			
					Bulo	ones	Mas	as
DN	DE	DI	P	E	E Cantidad		Contrabrida	Aro de goma
	mm	mm	mm	mm		mm	kg	kg
80	98	101	73,0	212	4	18 x 90	2,1	0,17
100	118	121	74,0	241	4	18 x 90	2,5	0,19
150	170	173	85,0	290	6	18 x 90	6,0	0,41
200	222	225	87,0	366	6	18 x 90	9,0	0,56
250	274	277	88,0	421	8	18 x 110	11,0	0,74
300	326	329	101,0	476	8	18 x 110	14,0	0,92
350	378	381	107,0	536	10	18 x 110	18,0	1,12
400	429	432	124,0	586	12	18 x 110	21,0	1,32
450	480	483	135,0	636	14	18 x 120	26,0	1,60
500	532	535	135,0	697	14	18 x 120	31,0	1,76
600	635	638	137,5	805	16	18 x 120	40,0	2,35
700	738	741	139,5	910	18	20 x 120	50,0	4,20
800	842	845	150,5	1027	18	20 x 130	72,0	4,80
900	945	948	160,0	1142	20	20 x 130	92,0	5,70
1000	1048	1051	170,0	1267	20	24 x 160	122,0	6,60
1200	1255	1258	190,0	1485	20	24 x 160	160,0	11,00

Utilizaciones: piezas especiales.

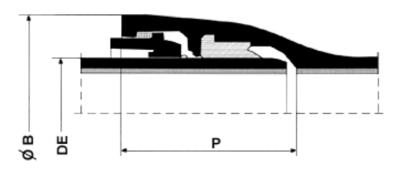
DIMENSIONES JUNTA ACERROJADA INTERNA - JTI



		Dimensiones y Masas								
DN	DE	DI	Р	В	Masas del aro de goma					
	mm	mm	mm	mm	kg					
80	98	101	92,5	168	0,20					
100	118	121	94,5	189	0,26					
150	170	173	100,5	243	0,43					
200	222	225	106,5	296	0,60					
250	274	277	105,5	353	0,86					
300	326	329	107,5	410	1,31					

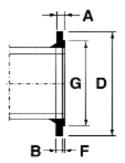
Utilización: caños clases K7 (DN 100 a 300), K9 (DN 80 a 300) y piezas especiales.

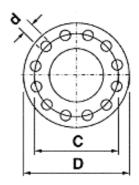
DIMENSIONES JUNTA ACERROJADA EXTERNA - JTE



			D	imensiones y l	Vlasas		
				Bul	ones	Masas	
DN	DE	Р	P E	Cantidad	Dimensiones	Aro de goma	Conjunto de acerrojado
	mm	mm	mm		mm	kg	kg
300	326	107,5	516	8	27 x 102	0,71	37,7
350	378	110,5	570	8	27 x 102	0,90	39,0
400	429	112,5	618	10	27 x 102	1,10	48,0
450	480	115,5	671	14	27 x 102	1,32	57,0
500	532	117,5	734	16	27 x 102	1,54	76,7
600	635	122,5	840	20	27 x 102	2,16	88,1
700	738	147,5	958	24	27 x 123	2,87	145,7
800	842	147,5	1069	30	27 x 123	3,67	173,8
900	945	147,5	1178	30	27 x 123	4,61	196,2
1000	1048	157,5	1286	30	27 x 123	5,59	223,9
1200	1255	167,5	1526	40	27 x 123	9,23	247,8

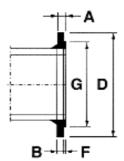
Utilización: caños clases K9 y piezas especiales.

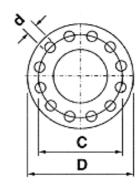

DIMENSIONES JUNTA PAMLOCK - JPK



				Dimensiones y M	asas			
				Masas				
DN	DE	Р	В	Conformador	Granalla	Anillo Metálico	Aro de Goma	
	mm	mm	mm	kg	kg	kg	kg	
1400	1462	300	1620	71,0	15,0	46,0	15,5	
1500	1565	315	1758	76,0	15,0	41,0	19,8	
1600	1668	325	1868	81,0	15,0	45,0	21,0	
1800	1875	350	1950	92,1	15,0	54,0	27,7	
2000				Consultar				

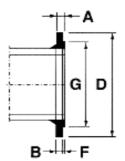
DIMENSIONES JUNTA CON BRIDA PN 10

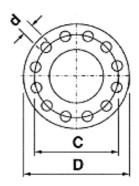



			Dimension	es				Dime	nsiones	
DN	F	D	G	A	В	DN	D	С	Agujer	os
DIN	· ·		9	^	"	Div.			Cantidad	d
	mm	mm	mm	mm	mm		mm	mm		mm
50	3	165	98	19,0	16,0	50	165	125	4	19
80	3	200	132	19,0	16,0	80	200	160	8	19
100	3	220	153	19,0	16,0	100	220	180	8	19
150	3	285	209	19,0	16,0	150	285	240	8	23
200	3	340	264	20,0	17,0	200	340	295	8	23
250	3	400	319	22,0	19,0	250	400	350	12	23
300	4	455	367	24,5	20,5	300	455	400	12	23
350	4	505	427	24,5	20,5	350	505	460	16	23
400	4	565	477	24,5	20,5	400	565	515	16	28
450	4	615	527	25,5	21,5	450	615	565	20	28
500	4	670	582	26,5	22,5	500	670	620	20	28
600	5	780	682	30,0	25,0	600	780	725	20	31
700	5	895	797	32,5	27,5	700	895		24	31
800	5	1015	904	35,0	30,0	800	1015	950	24	34
900	5	1115	1004	37,5	32,5		1115			34
1000	5	1230	1111	40,0	35,0	1000	1230	1160	28	37
1200	5	1455	1330	45,0	40,0		1455			40
1400	5	1675	1530	46,0	41,0		1675			43
1500	5	1785	1640	47,5	42,5		1785			43
1600	5	1915	1750	49,0	44,0		1915			49
1800	5	2115	1950	52,0	47,0		2115			49
2000	5	2325	2150	55,0	50,0	2000	2325	2230	48	49

Brida: normas NBR 7675 y ISO 2531.

DIMENSIONES JUNTA CON BRIDA PN 16


		Dimensiones							
DN	F	D	G	Α	В				
	mm	mm	mm	mm	mm				
50	3	165	98	19,0	16,0				
80	3	200	132	19,0	16,0				
100	3	220	153	19,0	16,0				
150	3	285	209	19,0	16,0				
200	3	340	264	20,0	17,0				
250	3	400	319	22,0	19,0				
300	4	455	367	24,5	20,5				
350	4	520	432	26,5	22,5				
400	4	580	484	28,0	24,0				
450	4	640	544	30,0	26,0				
500	4	715	606	31,5	27,5				
600	5	840	721	36,0	31,0				
700	5	910	791	39,5	34,5				
800	5	1025	898	43,0	38,0				
900	5	1125	998	46,5	41,5				
1000	5	1255	1115	50,0	45,0				
1200	5	1485	1330	57,0	52,0				
1400	5	1685	1530	60,0	55,0				
1500	5	1820	1640	62,5	57,5				
1600	5	1930	1750	65,0	60,0				
1800	5	2130	1950	70,0	65,0				
2000	5	2345	2150	75,0	70,0				


		Dime	nsiones	
DN	D	С	Agujero	os
DIN			Cantidad	d
	mm	mm	Caritidad	mm
50	165	125	4	19
80	200	160	8	19
100	220	180	8	19
150	285	240	8	23
200	340	295	12	23
250	400	355	12	28
300	455	410	12	28
350	520	470	16	28
400	580	525	16	31
450	640	585	20	31
500	715	650	20	34
600	840	770	20	37
700	910	840	24	37
800	1025	950	24	40
900	1125	1050	28	40
1000	1255	1170	28	43
1200	1485	1390	32	49
1400	1685	1590	36	49
1500	1820	1710	36	56
1600	1930	1820	40	56
1800	2130	2020	44	56
2000	2345	2230	48	62

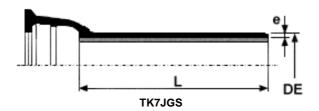
Brida: normas NBR 7675 y ISO 2531.

DIMENSIONES JUNTA CON BRIDA PN 25

		Dimensiones							
DN	F	D	G	A	В				
	mm	mm	mm	mm	mm				
50	3	165	98	19,0	16,0				
80	3	200	132	19,0	16,0				
100	3	235	159	19,0	16,0				
150	3	300	214	20,0	17,0				
200	3	360	274	22,0	19,0				
250	3	425	331	24,5	21,5				
300	4	485	389	27,5	23,5				
350	4	555	446	30,0	26,0				
400	4	620	503	32,0	28,0				
450	4	670	533	34,5	30,5				
500	4	730	613	36,5	32,5				
600	5	845	718	42,0	37,0				
700	5	960	820	46,5	41,5				
800	5	1085	929	51,0	46,0				
900	5	1185	1029	55,5	50,5				
1000	5	1320	1142	60,0	55,0				
1200	5	1530	1350	69,0	64,0				
1400	5	1755	1560	74,0	69,0				
1500	5	1855	1678	78,0	73,0				
1600	5	1955	1780	81,0	76,0				
1800	5	2195	1985	88,0	83,0				
2000	5	2425	2210	95,0	90,0				

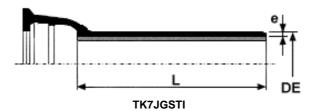
	Dimensiones						
DN	D	С	Agujeros				
DN			Cantidad	d			
50	mm	mm	Oantidad	mm			
50	165	125	4	19			
80	200	160	8	19			
100	235	190	8	23			
150	300	250	8	28			
200	360	310	12	28			
250	425	370	12	31			
300	485	430	16	31			
350	555	490	16	34			
400	620	550	16	37			
450	670	600	20	37			
500	730	660	20	37			
600	845	770	20	40			
700	960	875	24	43			
800	1085	990	24	49			
900	1185	1090	28	49			
1000	1320	1210	28	56			
1200	1530	1420	32	56			
1400	1755	1640	36	62			
1500	1855	1750	36	62			
1600	1955	1860	40	62			
1800	2195	2070	44	70			
2000	2425	2300	48	70			

Brida: normas NBR 7675 y ISO 2531.



CAPÍTULO 7 - CAÑOS - ESPIGA - ENCHUFE:

CAÑO CLASE K7 - JGS


	Dimensiones y Masas								
DN	Longitud Util (L)	DE	е	Mas	sas				
DN	Longitud Oth (L)	DE	(hierro)	Por metro	Total				
	m	mm	mm	kg	kg				
150	6	170	5,2	23,3	139,58				
200	6	222	5,4	31,9	191,26				
250	6	274	5,5	40,3	241,84				
300	6	326	5,7	49,8	298,92				
350	6	378	5,9	64,9	389,64				
400	6	429	6,3	77,9	467,60				
450	6	480	6,7	91,8	550,52				
500	6	532	7,0	106,1	636,74				
600	6	635	7,7	137,9	827,48				
700	7	738	8,4	176,5	1235,71				
800	7	842	9,1	216,3	1513,94				
900	7	945	9,8	259,4	1815,99				
1000	7	1048	10,5	306,2	2143,14				
1200	7	1255	11,9	411,9	2883,49				
1400	8,19	1462	13,3	-	4639,0				
1500	8,18	1565	14,0	-	5197,0				
1600	8,18	1668	14,7	-	5785,0				
1800	8,17	1875	16,1	-	7030,0				
2000	8,13	2082	17,5	-	8325,0				

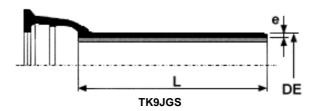
Revestimiento:

- internamente, mortero de cemento,
- externamente, zinc y pintura bituminosa.

CAÑO CLASE K7 - JTI

DN	Dimensiones y Masas							
	Longitud Util (L)	DE	е	Masas				
DIA		DL	(hierro)	Por metro	Total			
	m	mm	mm	kg	kg			
150	6	170	5,2	23,3	139,58			
200	6	222	5,4	31,9	191,26			
250	6	274	5,5	40,3	241,84			
300	6	326	5,7	49,8	298,92			

Revestimiento:


- internamente, mortero de cemento,
- externamente, zinc y pintura bituminosa.

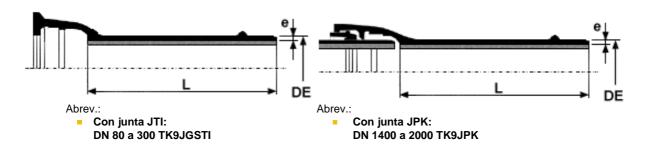
Vea También:

- Dimensiones junta acerrojada interna JTI
- Presiones de servício admisibles Caño clase K7

CAÑO CLASE K9 - JGS

	Dimensiones y Masas								
DN	Longitud Util (L)	DE	е	Ma	sas				
DN	Longitud Oth (L)	DE	(hierro)	Por metro	Total				
	m	mm	mm	kg	kg				
80	6	98	6,0	14,55	87,28				
100	6	118	6,1	18,00	108,04				
150	6	170	6,3	27,26	163,58				
200	6	222	6,4	36,70	220,06				
250	6	274	6,8	48,00	288,04				
300	6	326	7,2	60,42	362,52				
350	6	378	7,7	79,74	478,44				
400	6	429	8,1	94,73	568,40				
450	6	480	8,6	111,83	671,00				
500	6	532	9,0	129,32	775,94				
600	6	635	9,9	168,41	1010,48				
700	7	738	10,8	215,13	1505,91				
800	7	842	11,7	264,07	1848,54				
900	7	945	12,6	317,22	2220,59				
1000	7	1048	13,5	375,06	2625,44				
1200	7	1255	15,3	505,32	3537,29				
1400	8,19	1462	17,1	689,0	5643,0				
1500	8,18	1565	18,0	773,5	6327,0				
1600	8,18	1668	18,9	861,7	7049,0				
1800	8,17	1875	20,7	1050,3	8581,0				
2000	8,13	2082	22,5	1253,3	10194,0				

Revestimiento:


- internamente, mortero de cemento;
- externamente, zinc y pintura bituminosa.

Vea También:

- Dimensiones de la junta elástica JGS
- Presiones de servício admisibles Caños clase K9

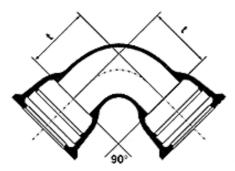
CAÑO CLASE K9 - JTI JTE JPK

con junta JTE: DN 300 a 1200 TK9JGSTE

					Dimension	es y Masa	S			
				Masas sin Acerrojado		Masas				
DN	Longitud Útil	DE	е			JTI	JTE		JPK	(
(L)	(L)	DL	(hierro)	Por metro	Total	Total	Conjunto de Acerrojado	Total	Conjunto de Acerrojado	Total
	m	mm	mm	kg	kg	kg	kg	kg	kg	kg
80	6	98	6,0	14,55	87,28	-	-	-	-	-
100	6	118	6,1	18,0	108,04	-	-	-	-	-
150	6	170	6,3	27,26	163,58	-	-	-	-	-
200	6	222	6,4	36,7	220,06	-	-	-	- 1	-
250	6	274	6,8	48,0	288,04	-	-	-	-	-
300	6	326	7,2	60,42	362,52	-	37,7	400,22	-	-
350	6	378	7,7	79,74	478,44	-	39,0	517,44	- 1	-
400	6	429	8,1	94,73	568,40	-	48,0	616,40	- 1	-
450	6	480	8,6	111,83	671,0	-	Consu	ıltar	- 1	-
500	6	532	9,0	129,32	775,94	-	73,60	849,54	- 1	-
600	6	635	9,9	168,41	1010,48	-	85,50	1095,98	- 1	-
700	7	738	10,8	215,13	1505,91	-	144,70	1650,61	-	-
800	7	842	11,7	264,07	1848,54	-	184,70	2033,24	- 1	-
900	7	945	12,6	317,22	2220,59	-	205,05	2425,64	- 1	-
1000	7	1048	13,5	375,06	2625,44	-	256,5	2881,94	- 1	-
1200	7	1255	15,3	505,32	3537,29	-	247,8	3785,09	- 1	-
1400	8,14	1462	17,1	691,0	5625,0	-	-	-	144,0	5769,0
1500	8,13	1565	18,0	782,2	6359,0	-	-	-	144,4	6503,4
1600	8,12	1668	18,9	875,1	7106,0	-	-	-	153,0	7259,0
1800	8,10	1875	20,7	1064,9	8625,5	-	-	-	167,7	8793,2
2000					Cons	sultar				

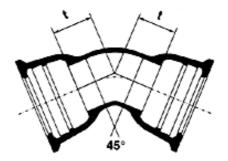
Revestimiento:

- internamente, mortero de cemento;
- externamente, zinc y pintura bituminosa.



CAPÍTULO 8 - CODOS CON ENCHUFES- JGS:

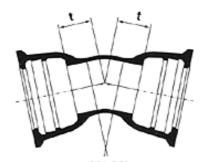
CODO 90° CON ENCHUFES - JGS



Abrev: C90JGS

		Dimensiones y Masas
DN	t	Masas
	mm	kg
80	100	10,0
100	120	13,15
150	170	21,6
200	220	33,9
250	270	47,9
300	320	70,36
350	370	96,0
400	420	105,0
450	470	163,0
500	520	178,0
600	620	274,0

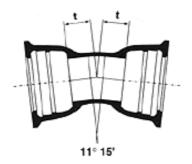
CODO 45° CON ENCHUFES - JGS



Abrev: C45JGS

	Dimension	nes y Masas
DN	t	Masas
	mm	kg
80	55	9,1
100	65	12,9
150	85	18,7
200	110	29,0
250	130	39,2
300	150	53,4
350	175	61,25
400	195	83,0
450	220	105,5
500	240	128,0
600	285	175,0
700	330	322,0
800	370	416,0
900	415	500,0
1000	460	710,0
1200	550	1050,0
1400	522	1555,0
1500	572	1815,0
1600	563	2089,0
1800	642	3126,0
2000	Con	sultar

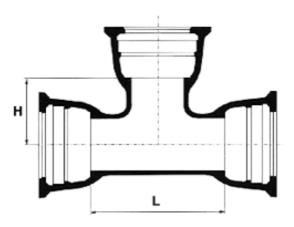
CODO 22° 30' CON ENCHUFES - JGS



22° 30' Abrev: C22JGS

Dimensiones y Masas			
t	Masas		
mm	kg		
40	8,5		
40	11,35		
55	17,6		
65	26,2		
75	33,8		
85	45,2		
95	50,1		
110	63,1		
120	81,0		
130	97,4		
150	157,00		
175	222,00		
195	324,00		
220	372,0		
240	520,00		
285	654,00		
264	1107,0		
314	1367,0		
284	1479,0		
340	2070,0		
355	2668,0		
	t mm 40 40 40 55 65 75 85 95 110 120 130 150 175 195 220 240 285 264 314 284 340		

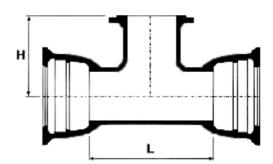
CODO 11° 15' CON ENCHUFES - JGS



Abrev: C11JGS

	Dimensiones y Masas				
DN	t	Masas			
	mm	kg			
80	30	8,8			
100	30	10,8			
150	35	16,8			
200	40	27,6			
250	50	34,2			
300	55	44,55			
350	60	48,0			
400	65	56,1			
450	70	71,00			
500	75	81,6			
600	85	106,00			
700	95	190,00			
800	110	272,00			
900	120	310,00			
1000	130	392,0			
1200	150	582,0			
1400	143	884,0			
1500	193	1143,0			
1600	153	1173,0			
1800	200	1542,0			
2000	201	2151,0			

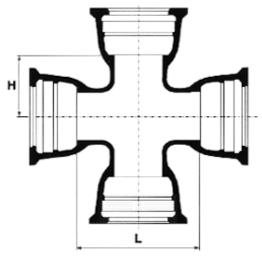
TE CON ENCHUFES - JGS



Abrev: **TJGS**

			Dimensiones y Masas	
DN	dn	L	Н	Masas
		mm	mm	kg
80	80	170	85	14,00
100	80	170	95	17,1
100	100	190	95	18,40
	80	170	120	22,9
150	100	195	120	25,00
	150	255	125	29,7
	80	175	145	32,3
200	100	200	145	32,8
200	150	255	150	38,9
	200	315	155	45,5
	80	180	170	39,00
250	100	200	170	39,5
	250	375	190	58,9
	80	175	195	50,00
	100	205	195	54,7
000	150	260	200	57,5
300	200	320	205	67,6
	250	380	210	77,6
	300	435	220	83,0
050	100	205	220	65,0
350	250	325	230	77,0
	80	180	245	74,5
	100	210	245	73,9
400	200	325	260	92,2
	300	440	270	114,6
	400	560	280	132,9
	100	215	295	103
	200	330	305	118,1
500	300	450	320	157,40
	400	565	330	174
	500	680	340	198
	100	220	345	140
	200	340	355	168
000	300	455	370	197
600	400	570	380	225
	500	690	395	256
	600	800	400	287

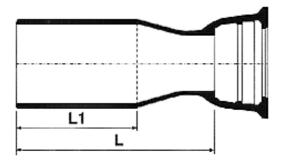
TE CON ENCHUFES JGS Y DERIVACIÓN CON BRIDA


Abrev: PN10: **TJGSF10** PN16: **TJGSF16** PN25: **TJGSF25**

				mensiones y Ma	Masas	
DN	dn	L	н	PN10	PN16	PN25
		mm	mm	kg	kg	kg
	50	130	155		11,00	
80	80	170	200		14,7	
	50	135	170		13	
100	80	180	180		17,7	
	100	180	190	18	3,8	20
	50	135	200		19,2	
4.50	80	170	205		23,3	
150	100	145	220	25	5,2	27,8
	150	255	220		1,0	30
	50	140	230		25,6	
	80	175	235		33,6	
200	100	200	240	34	4,5	39
	150	255	250		9,8	45
	200	315	260	41,5	41,5	53
	50	145	260		35,5	
050	80	180	265	İ	39,7	
250	100	200	270	4	1,3	41,0
	250	375	300	61,8	61,8	58,9
	100	205	300		59	60
300	200	320	320	70,0	70,0	78
	300	435	340	87,3	87,3	94,0
	100	205	330	53	3,8	65
350	200	325	350	82	82	84
	350	495	380	112	115	123
	100	210	360	75	5,2	76,5
400	200	325	380	93,8	93,8	96,1
400	300	440	400	115,7	115,7	120,9
	400	560	420	139,0	151	162
	100	215	420	10	6,8	105,7
	200	330	440	126,0	126,2	126,8
500	300	445	460	163,3	160	165
	400	565	480	192	198	209
	500	680	500	223	238	250
	100	220	480	1-	40	140
	200	340	500	165,0	175	177
600	300	455	520	205	205	210
	400	570	540	245	242,0	262
	600	800	580	334,1	352	367
	200	345	525	249,0	272,0	244,8
700	400	575	555	320,0	326,8	337,8
700	600	925	585	436,8	462,8	476,8

	700	925	600	536,0	475,8	510,8
	200	350	585	332,0	315,2	317,2
900	400	580	615	464,0	412,0	423,0
800	600	1045	645	596,0	623,0	637,6
	800	1045	672	596,4	672,0	708,3
	200	355	645	323,9	396,0	325,9
	400	590	675	502,2	508,4	519,7
900	600	1170	705	763,0	789,5	803,4
	800	1170	750	854,6	874,0	923,6
	900	1170	750	925,2	949,4	1010,0
	200	360	705	456,0	500,0	470,9
	400	595	735	596,0	637,4	648,6
1000	600	1290	795	938,0	956,8	971,0
	800	1290	800	1004,0	1082,0	1133,0
	1000	1290	825	1124,0	1070,0	1299,0
	200	370	825	756,0	650,0	928,0
	400	605	855	973,7	980,0	991,0
1000	600	840	885	1326,0	1100,0	1367,0
1200	800	1070	915	1569,0	1588,0	1637,0
	1000	1300	945	1818,0	1818,0	2408
	1200	1535	975	2010,0	2034,0	2135,0
	400*	1010	960	1519,0	·	
1400	600*	1010	980	1543,0		
	1400	1950	1100	2564,0		
	400*	1110	960	1766,0		
1500	600*	1110	980	1790,0		
	1500	2050	1100	3111,0		
	300*	1050	1050	1972,0		
	400*	1050	1100	1990,0		
1600	600*	1050	1090	2009,0		
	1000	1505	1150	2563,0	Con	sultar
	1600	2170	1240	3769,0		
	400*	1300	1300	2340,0		
	600*	1300	1200	2360,0		
1800	800	1535	1230	2704,0		
	900	1535	1245	2724,0		
	1800	2660	1380	4893,0		
	600*	1115	1310	3236,0		
2000	1000	1580	1370	4064,0		

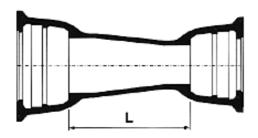
^{*} bridas orientables.



Abrev: XJGS

DN		Dimensiones y Masas			
	dn	L	Н	Masas	
		mm	mm	kg	
80	80	170	85	16,0	
100	80	170	95	23,1	
	100	190	95	25,1	
	80	170	120	27,9	
150	100	195	120	29,7	
	150	255	125	37,95	
	80	175	145	33,6	
200	100	200	145	38,2	
200	150	255	150	46,3	
	200	315	155	55,65	
	80	180	170	42,70	
250	100	200	170	44,00	
	250	375	190	77,40	
	80	175	195	50,10	
300	100	205	195	56,6	
300	200	320	205	75,20	
	300	435	220	104,0	
	80	180	245	79,80	
	100	210	245	82,20	
400	200	325	260	104,00	
	300	440	270	120,0	
	400	560	280	158,8	
	80	230	325	108,0	
	100	215	295	107,0	
500	200	330	305	132,0	
	300	450	320	160,0	
	500	680	340	223,0	
	100	220	345	143,0	
	200	340	355	175,0	
600	300	455	370	207,0	
	400	570	380	240,0	
	600	800	400	330,0	

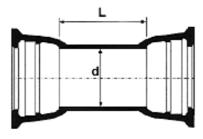
REDUCCIÓN ESPIGA Y ENCHUFE - JGS



Abrev: RPBJGS

		Dimensiones y Masas			
DN	dn	L	L1	Masas	
		mm	mm	kg	
75	50	200	82	3,7	
00	50	Consultar			
80	75	180	82	5,2	
100	80	200	92	7,8	
450	80	300	98	11,5	
150	100	300	98	12,5	
	80	300	104	12,3	
200	100	300	104	14,6	
	150	300	104	17,0	
250	150	350	104	22,1	
250	200	250	104	22,3	
	150	450	105	28,8	
300	200	350	105	28,85	
	250	250	105	30,5	
	200	460	108	38,0	
350	250	360	108	36,5	
	300	260	108	39,6	
	250	470	110	48,2	
400	300	370	110	44,8	
	350	270	110	42,4	
500	350	480	115	78,7	
300	400	380	115	62,4	
600	400	580	120	105,0	
000	500	380	120	90,0	

REDUCCIÓN CON ENCHUFES - JGS



Abrev: RJGS

		Dimensiones e Masas		
DN	dn	L	JGS	
		mm	kg	
500	350	360	100,98	
300	400	260	112,00	
600	400	460	139,50	
600	500	260	148,50	
700	500	480	222,90	
700	600	280	193,52	
900	600	480	299,60	
800	700	280	253,92	
000	700	480	391,96	
900	800	280	328,04	
1000	800	480	468,00	
1000	900	280	447,04	
1200	1000	480	700,00	
1400	1200	345		
4500	1200	478		
1500	1400	183		
	1200	645	Opensyller	
1600	1400	350	Consultar	
	1500	483		
1800	1600	428		
2000	1800	448		

EMPALME CON ENCHUFES - JGS

Abrev: LJGS

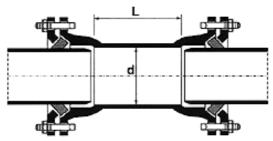
	Dimensiones y Masas			
DN	d	L	Masas	
	mm	mm	kg	
50	78	155	3,7	
75	104	160	5,44	
80	109	160	9,7	
100	130	160	11,7	
150	183	165	16,7	
200	235	170	24,2	
250	288	175	30,2	
300	340	180	38,9	
350	393	185	51,8	
400	445	190	52,2	
450	494	195	76,0	
500	550	200	81,0	
600	655	210	125,0	
700	760	220	181,0	
800	865	230	324,0	
900	970	240	368,0	
1000	1075	250	350	
1200	1285	270	436,0	

TAPÓN (CAP) - JGS

DN 80 a 250

Abrev.: **KJGS**

	Dimensiones y Masas		
DN	P	Masas	
	mm	kg	
80	90	4,15	
100	92	5,0	
150	98	9,2	
200	104	15,0	
250	104	19,0	
300	105	32,1	
350	108	39,0	
400	110	47,5	
450	113	50,0	
500	115	76,6	
600	120	112,0	

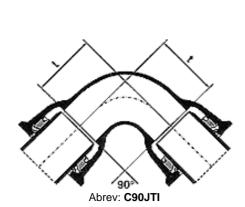


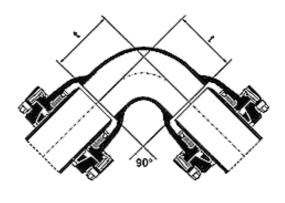
CAPÍTULO 9 - CODOS CON ENCHUFES - JM:

EMPALME DE CORRER - JM

Abrev: LCRJM

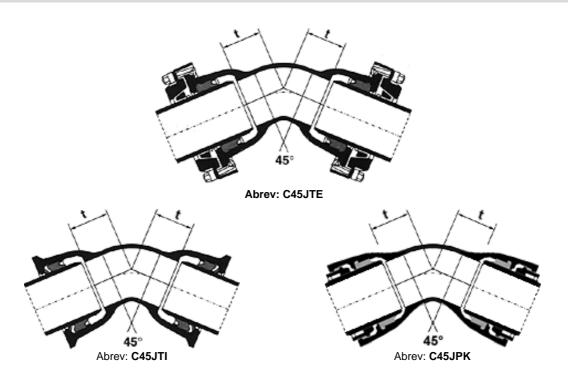
		Dimensiones y Masas	
DN	d	L	Masas
	mm	mm	kg
50	78	155	14,64
75	104	160	12,94
80	109	160	14,34
100	130	160	19,14
150	183	165	27,56
200	235	170	41,36
250	288	175	64,48
300	340	180	76,68
350	393	185	111,43
400	445	190	133,50
450	494	195	159,30
500	550	200	194,00
600	655	210	242,40
700	760	220	324,12
800	865	230	419,84
900	970	240	539,60
1000	1075	250	700,00
1200	1285	270	922,00





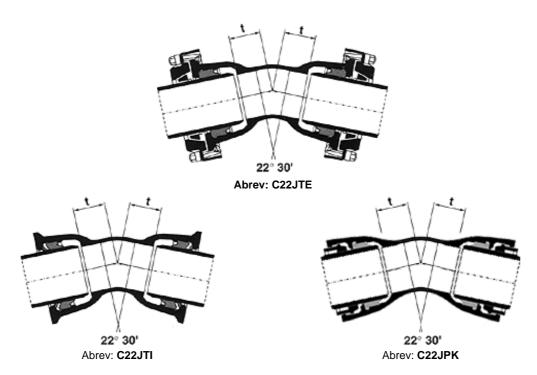
CAPÍTULO 10 - CODOS CON ENCHUFES - JTI, JTE Y JPK:

CODO 90° CON ENCHUFES - JTI JTE



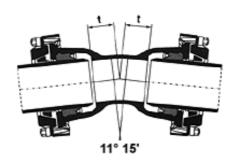
Abrev: C90JTE

		Dimensiones y Mas	as		
DN	+	Masas			
DN	'	JTI	JTE		
	mm	kg	kg		
80	100	10,0	-		
100	120	13,15	-		
150	170	21,60	-		
200	220	33,90	-		
250	270	47,9	-		
300	320	70,36	145,76		
350	370	-	174,0		
400	420	-	201,00		
450	470	-	Consultar		
500	520	-	325,20		
600	620	-	445,0		

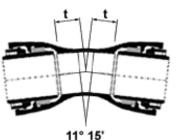


CODO 45° CON ENCHUFES - JTI JTE JPK

		Dimension	es y Masas		
DN	t		Masas		
DN	, t	JTI	JTE	JPK	
	mm	kg	kg	kg	
80	55	9,1	-	-	
100	65	12,9	-	-	
150	85	18,7	-	-	
200	110	29	-	-	
250	130	39,20	-	-	
300	150	53,40	128,80	-	
350	175	-	145	-	
400	195	-	179,00	-	
450	220	-	Consultar		
500	240	-	275,20	-	
600	285	-	346,00	-	
700	330	-	611,40	-	
800	370	-	785,40	-	
900	415	-	910,10	-	
1000	460	-	1223,00	-	
1200	550	-	1545,60	-	
1400	522	-	-	1891	
1500	655	-	-	2331,8	
1600	563	-	-	2621	
1800	730	-	-	4019,4	
2000		Cons	sultar		



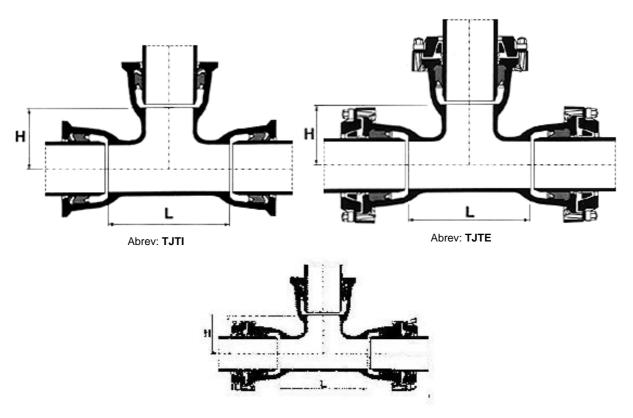
		Dimension	es y Masas	
DN	t		Masas	
DN		JTI	JTE	JPK
	mm	kg	kg	kg
80	40	8,5	-	-
100	40	11,35	-	-
150	55	17,60	-	-
200	65	26,2	-	-
250	75	33,80	-	-
300	85	45,20	120,60	-
350	95	-	132	-
400	110	-	159,10	-
450	120	-	Con	sultar
500	130	-	244,60	-
600	150	-	328,00	-
700	175	-	511,40	-
800	195	-	693,40	-
900	220	-	782,10	-
1000	240	-	1033,00	-
1200	285	-	1149,60	-
1400	-	-	-	
1500	-	-	-	Consultar
1600	-	-	-	Consultar
1800	-	-	-	
2000		Cons	sultar	



CODO 11° 15' CON ENCHUFES - JTI JTE JPK

Abrev: C11JTE

11° 15'
Abrev: C11JTI

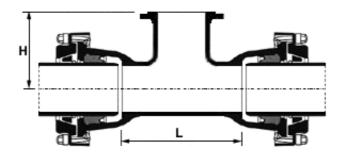


11° 15' Abrev: C11JPK

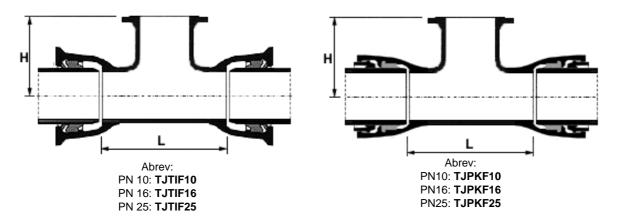
		Dimension	nes y Masas		
DN	4		Masas		
DN	t	JTI	JTE	JPK	
	mm	kg	kg	kg	
80	30	8,80	-	-	
100	30	10,80	-	-	
150	35	16,80	-	-	
200	40	27,6	-	-	
250	50	34,20	-	-	
300	55	44,55	119,95	-	
350	60	-	126	-	
400	65	-	152,10	-	
450	70	-	Consultar	-	
500	75	-	228,80	-	
600	85	-	277,00	-	
700	95	-	479,40	-	
800	110	-	641,40	-	
900	120	-	720,10	-	
1000	130	-	905,00	-	
1200	150	-	1077,60	-	
1400	-	-	-		
1500	-	-	-		
1600	-	-	-	Consultar	
1800	-	-	-		
2000	-	-	-		

TE CON ENCHUFES - JTI JTE

Code: TJTETI

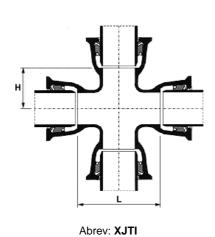

				Dimensiones y N		
DN	dn	L	н		Masas	
	dii	_		JTI	JTE	JTETI
		mm	mm	kg	kg	kg
80	80	170	85	14,00	-	-
100	80	170	95	17,10	-	-
100	100	190	95	18,40	-	-
	80	170	120	22,90	-	-
150	100	195	120	25,00	-	-
	150	255	125	29,70	-	-
	80	175	145	32,3	-	-
200	100	200	145	32,80	-	-
200	150	255	150	38,90	-	-
	200	315	155	45,50	-	-
	80	180	170	39,00	-	-
250	100	200	170	39,50	-	-
	250	375	190	58,9	-	-
	80	175	195	50,00	-	-
	100	205	195	54,70	-	-
300	150	260	200	57,50	-	-
300	200	320	205	67,60	-	-
	250	380	210	77,60	-	-
	300	435	220	83,00	196,10	-
	80	180	245	-	-	Consulta
	100	210	245	-	-	Consulta
400	200	325	260	-	-	Consulta
	300	440	270	-	248,30	-
	400	560	280	-	276,90	-
	100	215	295	-	-	Consulta

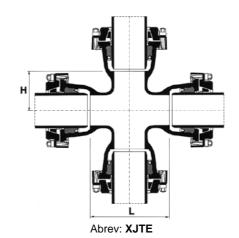
500	200	330	305	-	-	Consultar
	300	450	320	-	342,30	-
	500	680	340	-	418,80	-
	100	220	345	-	-	Consultar
	200	340	355	-	-	Consultar
600	300	455	370	-	405,70	-
	400	570	380	-	444,00	-
	600	800	400	-	543,50	-


Revestimiento: internamente y externamente, pintura bituminosa. * Usar el anillo JTI en las derivaciones (dn).

TE CON ENCHUFES JTI JTE JPK Y DERIVACIÓN CON BRIDA

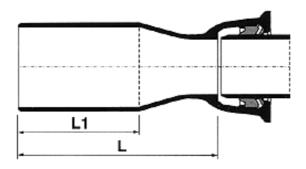
Abrev: PN10: TJTEF10 PN16: TJTEF16 PN25: TJTEF25


						Dime	ensiones	y Masas				
								Masas				
DN	dn	L	Н		JTI		JTE			JPK		
				PN 10	PN 16	PN 25	PN 10	PN 16	PN 25	PN 10	PN 16	PN 25
		mm	mm	kg	kg	kg	kg	kg	kg	kg	kg	kg
80	50	-	-		-			-			-	
80	80	170	165		14,70			-			-	
100	50	-	-		-			-			-	
100	80	170	175		17,70			-			-	
	50	-	-		-			-			-	
450	80	170	205		23,30			-			-	
150	100	190	210		25,20							
	150	255	220		31,00			-				
	50	-	-				-					
	80	175	235		33,60			-		-		
200	100	200	240	34,	,50	-	-		-			
	150	260	250	39,80	39,80 45,0		-					
	200	315	260	41,50	40	0,0		-			-	
	50	-	-	-		-		-			-	
250	80	180	265		39,7			-			-	
250	100	200	270	41,	,30	-		-			-	
	250	375	300	61,80	-	-		-			-	
	100	205	300	59	0,0	-	134	1,40	135,40		-	
300	200	320	320	70,00	-	-	145,40	145,70	153,40		-	
	300	435	340	87,30	-	-	162,70	162,70	169,40		-	
	100	205	330		-		14	3,0	143,0		-	
350	200	325	350		-		160,0	160,0	162,0		-	
	350	495	380		-		190,0	193,0	201,0		-	


	100	210	360	-	171	1,20	172,50		-
	200	325	380	-	189,80	189,80	192,10		-
400	300	440	400		211,70	211,70	216,90		-
	400	560	420		235,00	247,0	258,0		-
	100	215	420	-		4,0	252,90		-
	200	330	440	-	273,40	273,40	274,00		-
500	300	445	460	-	310,50	307,20	312,20		-
	400	565	480	-	339,20	345,20	356,20		-
	500	680	500	-	370,20	385,20	397,20		-
	100	220	480	-		1,0	311,0		-
	200	340	500	-	336,0	346,0	348,0		-
600	300	455	520	-	376,0	376,0	381,0		-
	400	570	540	-	416,0	413,0	433,0		-
	600	800	580	-	505,10	523,0	538,0		-
	200	345	525	-	538,40	561,4	534,20		-
	400	575	555	-	604,16	610,0	621,0		-
700	600	925	585	<u>-</u>	726,20	752,2	766,20		-
	700	925	600	-	825,40	765,2	800,20		-
	200	350	585	-	701,40	684,6	686,6		-
	400	580	615	_	833,40	781,40	801,40		_
800	600	1045	645	_	965,40	992,40	1007,00		-
	800	1045	672	_	965,80	1041,40	1077,70		_
	200	355	645	_	734,0	806,10	736,0		_
	400	590	675	-	912,3	918,50	929,8		-
900	600	1170	705	-		1199,60	1213,5		-
300	800	1170	750	-	-	1284,10	1333,7		-
	900	1170	750	-	-	1359,50	1420,1		-
	200	360	705	-	969,00	1013,0	983,9		-
	400	595	735		1109,00	1150,40	1161,60		-
1000	600	1290	795	-		1469,80	1484,0		-
1000	800	1290	800	-	1517,00	1595,0	1646,0		-
	1000	1290	825		1637,0	1583,0	1812,0		
	200	370	825	-		1145,60			-
	400	605	855	-		1475,60			<u>-</u>
	600	840	885	-		1595,60			-
1200	800	1070	915			2083,60			_
	1000	1300	945	<u>-</u>		2313,60			<u>-</u>
	1200	1535	975	-		2529,60			-
	400*		960	-	2505,60	2529,00	2030,00	Concultor C	
1400	600*	1010	980	-		-			Consultar Consultar Consultar Consultar
1400	1400	1950	1100	-					Consultar Consultar
	400*	1276	960	-		-			Consultar Consultar
1500	600*	1276	980	<u> </u>		-			Consultar Consultar
1300	1500	2216	1100	<u>-</u>		-			Consultar Consultar
				-		-			Consultar Consultar
	300* 400*	1050 1050	1050	-		-			consultar Consultar
1600			1100	-		-			
1600	600*	1050	1090	-		-			Consultar Consultar
	1000	1505	1150	<u>-</u>		-			Consultar Consultar
	1600	2170	1240	-		-			Consultar Consultar
	400*	1476	1300	-		-		Consultar	Consultar
4000	600*	1476	1200	-	-	-		Consultar	Consultar
1800	800	1711	1230	-		-		Consultar	Consultar
	900	1711	1245	-		-		Consultar	Consultar
	1800	2836	1380	-		-		Consultar	Consultar
0000	600*	1115	1310	-		-			Consultar
2000	1000	1580	1370	-		-			Consultar
	1400	2045	1430	-		-		C	onsultar

Revestimiento: internamente y externamente, pintura bituminosa. * bridas orientables.

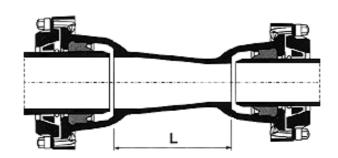
CRUZ CON ENCHUFES - JTI JTE



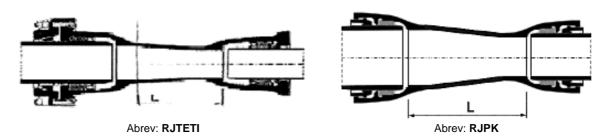
			Dimension	nes y Masas	
DN	also .			Ma	sas
DN	dn	L	н	JTI	JTE
		mm	mm	kg	kg
80	80	170	85	16,0	-
100	80	170	95	23,1	-
100	100	190	95	25,1	-
	80	170	120	27,90	-
150	100	195	120	29,70	-
	150	255	125	37,95	-
	80	175	145	33,6	-
200	100	200	145	38,20	-
200	150	255	150	46,30	-
	200	315	155	55,65	-
	80	180	170	42,70	-
250	100	200	170	44,00	-
	250	375	190	77,40	-
	80	175	195	50,10	125,50
300	100	205	195	56,6	132,00
300	200	320	205	75,20	150,60
	300	435	220	104,0	254,80
	80	180	245	-	175,80
	100	210	245	-	178,20
400	200	325	260	-	200,00
	300	440	270	-	272,5
	400	560	280	-	350,80
	80	230	325	-	255,20
	100	215	295	-	254,20
500	200	330	305	-	279,20
	300	450	320	-	382,60
	500	680	340	-	514,40
	100	220	345	-	314,00
	200	340	355	-	346,00
600	300	455	370	-	453,40
	400	570	380	-	507,00
	600	800	400	-	672,00

Revestimiento: internamente y externamente, pintura bituminosa. * Usar el anillo JTI en las derivaciones (dn).

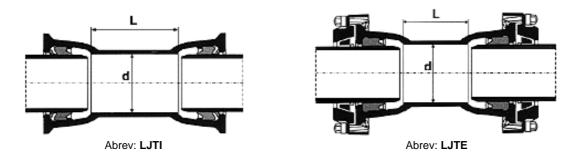
REDUCCIÓN ESPIGA Y ENCHUFE - JTI


Abrev: RPBJTI

			Dimensiones y Masas	
DN	dn	L	L1	Masas
		mm	mm	kg
100	80*	200	92	7,80
150	80*	300	98	11,80
150	100*	300	98	12,50
	80*	300	104	12,30
200	100*	300	104	14,60
	150*	300	104	17,0
250	150*	350	104	22,10
250	200*	250	104	22,30
	150*	450	105	28,80
300	200*	350	105	28,85
	250*	250	105	30,5


^{*} Usar el anillo JTI en el diámetro menor (dn).

REDUCCIÓN CON ENCHUFES - JTE JPK JTETI


Abrev: **RJTE**

DN	dn	L	JTE	JPK	JTETI
		mm	kg	kg	kg
500	400	260	233,60	-	-
600	400	460	273,00	-	-
000	500	260	30760	-	-
700	500	480	445,08	-	-
700	600	280	423,6	-	-
800	600	480	564	-	-
000	700	280	569	-	-
900	700	480	697	-	-
300	800	280	694	-	-
1000	800	480	865	-	-
1000	900	280	864	-	-
1200	1000	480	1179	-	-
1400	1200	345	-		
1500	1200	478	-		
1300	1400	183	-		
	1200	645	-	Con	sultar
1600	1400	350	-		
	1500	483	-		
1800	1600	428	-		
2000	1800	448	-	Consultar	-

EMPALME CON ENCHUFES - JTI JTE

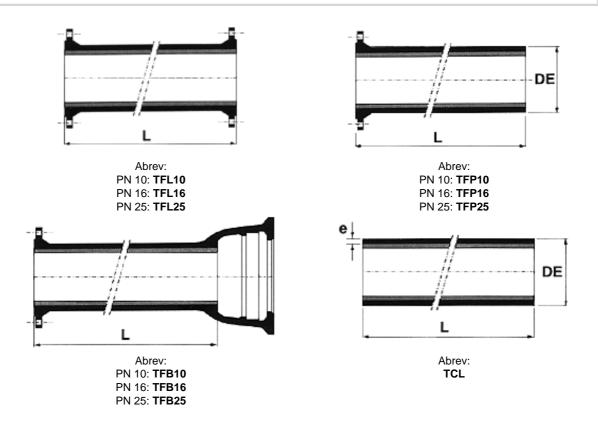
		Dimension	es y Masas	
DN	d	L	Ma	isas
DN	u	_	JTI	JTE
	mm	mm	kg	kg
80	109	160	9,70	-
100	130	160	11,7	-
150	183	165	16,7	-
200	235	170	24,2	-
250	288	175	30,20	-
300	340	180	38,90	114,30
350	393	185	-	128,0
400	445	190	-	148,20
450	494	195	-	Consultar
500	550	200	-	228,20
600	655	210	-	296,00
700	760	220	-	456,0
800	865	230	-	693,40
900	970	240	-	668,0
1000	1075	250	-	863,00
1200	1285	270	-	931,60

TAPÓN (CAP) - JTI JTE

Abrev.:

con junta JTI: KJTIcon junta JTE: KJTE

		Dimensiones y Masas							
DN	Р _	Masas							
DN	· ·	JTI	JTE						
	mm	kg	kg						
80	90	4,15	-						
100	92	5,00	-						
150	98	9,20	-						
200	104	15,0	-						
250	104	19,00	-						
300	105	32,1	69,80						
350	108	-	-						
400	110	-	95,50						
450	113	-	-						
500	115	-	150,20						
600	120	-	197,50						



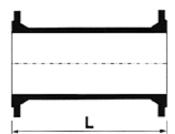
CAPÍTULO 11 - CAÑOS Y CODOS CON BRIDAS:

CAÑOS CON BRIDAS

				Dimensiones y	Masas			
		Caño C	ilíndrico		Enchufe JGS		Brida	
DN				Masas		Masas		
	Longitud Máxima L	Diámetro Externo DE	Espesor Nominal e	con Cimento	Masas	PN 10	PN 16	PN 25
	m	mm	mm	kg/m	kg	kg	kg	kg
80	5,8	98	6,0	13,98	3,4		4,0	
100	5,8	118	6,1	17,29	4,3	4	,8	4,8
150	5,8	170	6,3	26,08	7,1	6	,5	6,8
200	5,8	222	6,4	34,96	10,3	9	,6	11,1
250	5,8	274	6,8	45,64	14,2	13	3,6	17,5
300	5,8	326	7,2	57,32	18,6	19	9,3	24,8
350	5,8	378	7,7	75,79	23,7	24,7	24,7	24,7
400	5,8	429	8,1	89,85	29,3	25,9	36,1	47,0
450	5,8	480	8,6	105,90	35,6	34,5	42,0	53,5
500	5,8	532	9,0	122,19	42,8	34,8	52,2	85,8
600	5,8	635	9,9	158,53	59,3	49,9	99,5	87,2
700	6,8/2 (*)	738	14,4/16,8	260,73/268,4 (**)	79,1	75,4	89	143,5
800	6,8	0.40	15,6	319,72	400.0	106,7	-	-
800	2 (*)	842	18,2	332,0 (**)	102,6	-	125,9	125,9
000	6,8	0.45	16,8	383,87	400.0	129,5	-	-
900	2 (*)	945	19,6	402,0 (**)	129,9	-	129,5	205,05
1000	6,8	1048	18,0	453,32	161,3	192	-	-

	2 (*)		21,0	478,0 (**)		-	192,0	270,0
1200	6,8	1255	20,4	609,07	237,7	220,0	-	-
1200	2 (*)	1200	23,8	648,0 (**)	231,1	-	284,0	384,0
1400	7,4	1462	17,1	641,6	388,0	256,0	-	-
1400	3 (*)	1402	22,8	726,8 (**)	300,0	-	209,8	339,3
1500	3 (*)	1565	22,8	819,1 (**)	454,8	283,0	383,0	503,0
1600	2,59 (*)	1668	25,2	916,9 (**)	519,3	356,1	440,2	587,7
1800	3 (*)	1875	27,6	1129,3 (**)	644,2	384,3	478,4	675,7
2000	3 (*)	2082	30,0	1363,4 (**)	747,3	573,3	703,3	1063,3

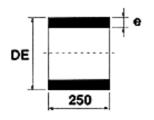
Revestimiento:

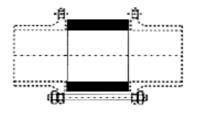

- internamente, mortero de cemento.
- externamente, pintura bituminosa.
- (*) Caños revestidos internamente con pintura bituminosa.
- (**) Masas sin cemento.

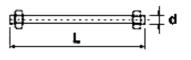
Vea También:

- Dimensiones de la junta elástica JGS
- Dimensiones de la junta con brida PN 10
- Dimensiones de la junta con brida PN 16
- Dimensiones de la junta con brida PN 25
- Presiones de servício admisible Piezas con brida

CARRETEL CON BRIDAS


Abrev.:

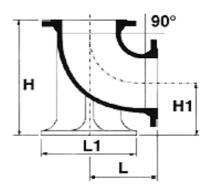

PN 10: **TOF10** PN 16: **TOF16** PN 25: **TOF25**


	Dimensiones y Masas									
DN		Masas L = 0,25 m			Masas L = 0,50 n	n				
DN	PN 10	PN 16	PN 25	PN 10	PN 16	PN 25				
	kg	kg	kg	kg	kg	kg				
50		8,5			15					
80		10,24			14,2					
100	12	2,4	15,0	17	7,7	19,0				
150	19	0,0	26,0	27	,5	34,0				
200	28,40	28,4	36,0	30,6	30,6	47,0				
250	47,7	47,7	50,0	63,0	63,0	67,0				
300	56,0	56,0	66,0	66,9	76,0	86,0				
350	64,0	64,0	92,0	88,0	88,0	110,0				
400	72,0	72,0	119,0	148,0	148,0	148,0				
450	79,0	110,0	133,0	108,0	152,0	155,0				
500	115,0	146,0	170,0	164,8	186,0	210,0				
600	124,0	217,0	245,0	178,0	215,0	297,0				
700	166,0	249,0	319,0	225,0	316,0	386,0				
800	192,0	220,0	415,0	260	286,0	497,0				
900	241,0	398,0	518,0	364,0	498,0	618,0				
1000	284,0	356,0	659,0	386,0	480,0	778,0				
1200	408,0	498,0	925,0	755,0	883,0	1083,0				

MANGUITO

Manguito simple Abrev.: CLS

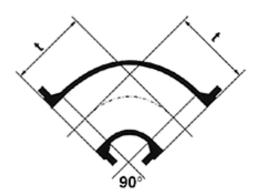
Manguito con tirantes Abrev.:


PN 10: **CLC10** PN 16: **CLC16** PN 25: **CLC25**

Tirantes
 Abrev.:
PN 10: TPC10
PN 16: TPC16
PN 25: TPC25

							Dimensi	ones y M	asas						
		Manguite							Tira	ntes					
DN	N Recortar L = 0,25 m			PN 10				PN	16		PN 25				
	е	DE	Masas	Quant.	L	d	Masas	Quant.	L	d	Masas	Quant.	L	d	Masas
	mm	mm	kg	Quant.	mm	mm	kg	Quant.	mm	mm	kg	Quant.	mm	mm	kg
80	26,0	130,0	15,3	8	360	16	5,0	8	360	16	5,0	8	360	16	5,0
100	26,5	153,0	19,0	8	360	16	5,0	8	360	16	5,0	8	370	20	7,0
150	29,5	209,0	31	8	370	20	7,0	8	370	20	7,0	8	380	24	9,6
200	32,0	264,0	41,1	8	370	20	7,0	12	370	20	10,6	12	380	24	14,5
250	34,5	319,0	55,0	12	370	20	10,6	12	380	24	14,4	12	430	27	20,4
300	34,5	369,0	67,5	12	370	20	10,6	12	380	24	14,4	16	430	27	27,2
350	38,5	427,0	84,0	16	370	20	14,1	16	380	24	19,2	16	450	30	35,7
400	38,5	477,0	92,3	16	380	24	19,2	16	430	27	27,2	16	460	33	44,8
450	38,5							Consulta	ır						
500	41,0	582,0	122	20	380	24	24,0	20	450	30	44,6	20	460	33	56,0
600	41,0	682,0	148,0	20	430	27	34,0	20	460	33	56,0	20	480	36	71,0
700	48,5	797,0	204,0	24	430	27	40,8	24	460	33	67,2	24	490	39	107,0
800	52,0	904,0	249,0	24	450	30	53,5	24	480	36	85,2	24	520	45	153,1
900	52,0	1004,0	278,0	28	450	30	62,4	28	480	36	99,4	28	520	45	178,6
1000	55,5	1111,0	329,0	28	460	33	78,4	28	490	39	124,9	28	550	52	253,1
1200	60,0	1320,0	424,0	32	480	36	113,6	32	520	45	204,2	32	550	52	289,3

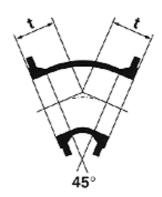
CODO CON PIE 90° CON BRIDAS



Abrev.: PN 10: **CP90FF10** PN 16: **CP90FF16** PN 25: **CP90FF25**

				Dimensio	nes y Masas				
DN		L1	н	H1	Masas				
DN		LI		пі	PN 10	PN 16	PN 25		
	mm	mm	mm	mm	kg	kg	kg		
80	165	180	275	110	14,1				
100	180	200	305	125	18,0				
150	220	250	380	160	31	,5	30,0		
200	260	300	450	190	41,30	44	47,0		
250	350	350	575	225	71,0	71,0	78,0		
300	400	400	655	255	96	102,0	112,0		
350	450	450	740	290	136,0	141,0	159,0		
400	500	500	820	320	172,0	183,0	206,0		
450	550	550	905	355	231,0	246,0	270,0		
500	600	600	985	385	397,0	430,0	330,0		
600	700	700	1150	450	538,0	476,0	504,0		

CODO 90° CON BRIDAS



Abrev.: PN 10: **C90FF10** PN 16: **C90FF16** PN 25: **C90FF25**

		Dimension	nes y Masas	
DN	_		Masas	
DN	t	PN 10	PN 16	PN 25
	mm	kg	kg	kg
50	150		6	
80	165		9,7	
100	180	1	1,3	12,0
150	220	2	1,8	20,0
200	260	30,8	30,8	32,0
250	350	49,85	49,85	53,0
300	400	66,17	66,17	76,0
350	450	91,3	93,0	110,0
400	500	121	121	145,0
450	550	173	210,0	233,0
500	600	194,0	318,0	278,0
600	700	366	409	430,0
700	800	520,0	490,0	480,0
800	900	580,0	563,0	690,0
900	1000	780,0	738,0	858,0
1000	1100	996,0	975,0	1132,0
1200	1300	1647,0	1549,0	1749,0

CODO 45° CON BRIDAS

Abrev.: PN 10: **C45FF10** PN 16: **C45FF16** PN 25: **C45FF25**

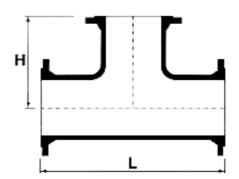
		Dimension	es y Masas			
DN	t		Masas	Masas		
DN	·	PN 10	PN 16	PN 25		
	mm	kg	kg	kg		
80	130		10,82			
100	140	11	1,4	11,5		
150	160	20	0,0	19,0		
200	180	29,8	29,5	30,0		
250	350	54,0	58,6	59,0		
300	400	77	7,6	84,0		
350	298	109,5	80,0	97,0		
400	324	111,3	111,3	125,0		
450	349	128,5	173,0	196,0		
500	375	228,0	250,0	262,0		
600	426	286,0	290,0	358,0		
700	478	405,0	430,0	395,0		
800	529	413,0	438,0	536,0		
900	581	536,0	564,0	717,0		
1000	632	900,0	747,0	903,0		
1200	750	1304,0	1171,0	1371,0		
1400	782	1667,0				
1500	782	1774,0	Consultar			
1600	843	2279,0				
1800	905	3522,0				
2000		Cons	sultar			

CODO 22° 30' CON BRIDAS

Abrev.: PN 10: **C22FF10** PN 16: **C22FF16** PN 25: **C22FF25**

		Dimension	nes y Masas		
DN	t		Masas		
DN	,	PN 10	PN 16	PN 25	
	mm	kg	kg	kg	
80	97		8,2		
100	105	1	7,0	18,0	
150	119	2	28,0	30,0	
200	134	35,25	41,0	45,0	
250	149	47,5	47,5	62,0	
300	164	73,0	60,7	83,0	
350	179	85,6 105,0		121,0	
400	194	118,0 136,0		158,0	
450	209	156,0	156	194,0	
500	224	210	190,8	234,0	
600	254	413,0	305,0	333,0	
700	284	344,0	374,0	444,0	
800	314	472,0	510,0	608,0	
900	344	605,0	653,0	773,0	
1000	374	781,0	865,0	1021,0	
1200	434	1110,0	1238,0	1438,0	
1400	524	1220,0	Consultar		
1500	524	1326,0	Consultar		
1600	564	1668,0	Co	nsultar	
1800	604	2466,0	Co	nsultar	
2000	650	2718,0	Co	nsultar	

CODO 11° 15' CON BRIDAS

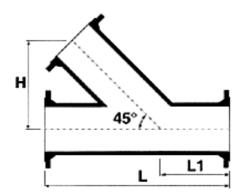

11°15'

Abrev.: PN 10: **C11FF10** PN 16: **C11FF16** PN 25: **C11FF25**

		Dimension	nes y Masas				
DN	t		Masas				
DIN	L L	PN 10	PN 16	PN 25			
	mm	kg	kg	kg			
80	69		8,8				
100	75	9,	,24	17,0			
150	84	2:	5,0	19,63			
200	95	35,58	36,0	40,0			
250	104	32,4	49,0	55,0			
300	114	51,7	62,0	72,0			
350		Consultar					
400	134	138	116,0	93,0			
450		Con	sultar				
500	154	134,0	149,2	203,0			
600	174	164	164	287,0			
700	194	208,0	304,0	374,0			
800	213	250,0	412,0	510,0			
900	234	473,0	468,0	641,0			
1000	253	609,0	693,0	849,0			
1200	293	680,0	1055,0	1255,0			
1400	403	996,0	Consultar				
1500	403	1102,0	Consultar				
1600	433	1363,0	Con	sultar			
1800	463	1938,0	Cons	sultar			
2000	496	2201,0	Cons	sultar			

TE CON BRIDAS

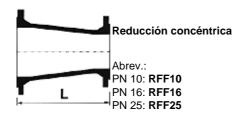
Abrev.: PN 10: **TFF10** PN 16: **TFF16** PN 25: **TFF25**

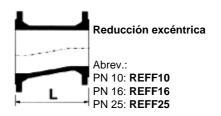

			Di	mensiones y Mas	sas	
DN	dn	L	н		Masas	
DN	un		"	PN 10	PN 16	PN 25
		mm	mm	kg	kg	kg
80	50	320	160		14,8	
00	80	320	165		16,0	
	50	360	160	16	5,0	16,0
100	80	360	175	19	,15	19,3
	100	360	180	17	,00	20,00
	50	440	200	26	,31	26,0
450	80	440	205	27	,40	32,0
150	100	440	210	28	,44	31,00
	150	440	220	32	,30	35,00
	50	520	235	29,50	48,0	52,0
	80	520	235	43,5	43,5	44,00
200	100	520	240	37,40	41,00	45,00
	150	520	250	50,43	48,9	57,00
	200	520	260	49,20	49,1	53,00
	50	700	265	67,0	67,0	73,0
	80	700	265	65,00	69,0	75,0
250	100	700	275	61,2	67,0	75,0
	200	700	325	88,2	73,0	82,0
	250	700	350	80,0	80,0	91,0
	100	800	300	88,7	92,00	103,00
300	200	800	350	105,60	103,00	112,00
	300	800	400	114,20	119,00	134,00
	100	850	325	135,70	118,0	135,00
250	200	850	325	144,50	123,00	142,0
350	300	850	425	119,00	139,0	160,0
	350	850	425	153,00	148,0	173,00
	100	900	350	131,40	149,0	172,0
400	200	900	350	136,90	153,0	178,0
400	300	900	450	159,0	171,0	198,0
	400	900	450	179,20	206,10	223,00
	100	950	375	173,0	182,00	212,0
	200	950	375	180,0	247,00	220,0
450	300	950	475	187,0	280,00	230,0
	400	950	475	202,00	225,0	259,0
	450	950	475	202,00	277,00	264,0
	100	1000	400	218,00	251,00	259,0
	200	1000	400	226,00	266,00	265,0
500	300	1000	500	252,00	249,0	278,0
	400	1000	500	259,00	296,00	305,0
	500	1000	500	274,00	320,00	329,0

	100	1100	450	281,00	326,00	390,00
	200	1100	450	326,00	389,00	376,0
600	300	1100	550	355,00	407,00	424,00
000	400	1100	550	380,00	423,00	414,0
	500	1100	550	391,00	380,0	420,0
	600	1100	550	408,00	490,0	538,00
	200	650	525	334,00	366,00	406,00
700	400	870	555	378,00	391,00	456,0
	700	1200	600	582,00	607,00	628,0
	200	690	585	386,00	401,00	468,00
800	400	910	615	470,00	459,00	589,0
000	600	1350	645	603,00	806,00	744,00
	800	1350	675	685,00	708,00	863,0
	200	730	645	481,00	482,0	603,0
000	400	950	675	595,00	592,0	722,0
900	600	1500	705	864,00	966,00	990,0
	900	1500	750	986,00	925,0	1107,0
	200	700	705	562,00	617,00	768,00
1000	400	990	735	660,00	742,00	920,0
1000	600	1650	765	1014,00	1110,0	1280,0
	1000	1650	825	1044,00	1248,00	1465,0
	200	850	825	880,00	972,00	1137,0
	400	1070	855	965,0	1099,0	1310,0
4000	600	1250	885	1192,00	1274,00	1473,0
1200	800	1450	885	1376,00	1515,0	1764,0
	1000	1680	935	1804,00	1746,00	2012,0
	1200	1950	975	2157,00	2055,0	2355,0
	400*	1530	960	1619,0	Consultar	Consulta
1400	600*	1530	980	1642,0	Consultar	Consulta
	1400	2470	1100	2676,0	Consultar	Consulta
	400*	1530	960	1725,0	Consultar	Consulta
1500	600*	1530	980	1749,0	Consultar	Consulta
	1500	2470	1100	2807,0	Consultar	Consulta
	300*	1610	1050	2250,0	Consultar	Consulta
	400*	1610	1100	2167,0	Consultar	Consulta
1600	600*	1610	1090	2186,0	Consultar	Consulta
	1000	2730	1215	3216,0	Consultar	Consulta
	1600	2730	1240	3670,0	Consultar	Consulta
	400*	1655	1230	2735,0	Consultar	Consulta
	600*	1655	1200	2756,0	Consultar	Consulta
1800	800	1885	1230	3156,0	Consultar	Consulta
	900	1885	1245	3172,0	Consultar	Consulta
	1800	3010	1380	5345,0	Consultar	Consulta
	600	1705	1310	3334,0	Consultar	Consulta
2000	1000	2170	1370	4182,0	Consultar	Consulta
	1400	2635	1430	5029,0	Consultar	Consulta

Revestimiento: internamente y externamente, pintura bituminosa. * bridas orientables

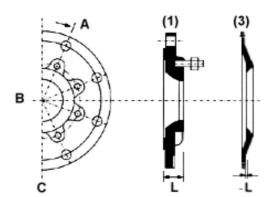
DERIVACIÓN 45° CON BRIDAS




Abrev.: PN 10: **YFF10** PN 16: **YFF16** PN 25: **YFF25**

		Dimensiones y Masas								
DN	dn	L	L ₁	н		Masas				
DIN	un		-1	"	PN 10	PN 16	PN 25			
		mm	mm	mm	kg	kg	kg			
80	80	400	90	195		17,0				
100	80	430	90	215	22	,50	21,0			
100	100	430	90	215	23	,30	22,50			
150	100	530	95	270	22	2,0	36,0			
130	150	530	95	270	40,4		40,4			
	100	600	95	321	59,90	59,90	52,0			
200	150	600	95	321	51,0	51,0	56,0			
	200	600	95	321	67,45	67,65	60,00			
	150	700	115	363	71,00	71,00	79,0			
250	200	700	115	363	76,0	76,0	84,0			
	250	700	115	363	112,55	112,55	90,0			
	200	800	135	412	131,00	131,00	114,0			
300	250	800	135	412	140,40	140,40	159,0			
	300	800	135	412	152,55	111,0	126,0			
	300	960	145	472	227,00	231,00	271,00			
400	350			Con	sultar		-			
	400	960	145	512	264,00	213,00	304,00			

REDUCCIÓN CON BRIDAS

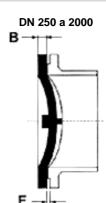


			1	Dilli	ensiones y M						
DN	din	L	Masas Concéntrica Excéntrica								
DN	dn		DN 40			DN 40		DNIOS			
		mm	PN 10	PN 16	PN 25	PN 10 kg	PN 16	PN 25			
	50	200	kg	7,11	kg	kg	7,2	kg			
80	75	205	0	7,11	9,4		-				
	50	300		40	16,0		-				
100	80	200	9,		9,5	10	0,0	10,0			
	80	400		,85	26,5		7,2	18,2			
150	100	300		4,6	17,00		5,25	16,6			
	100	600	38,30	38,30	40,20	37,1	37,1	38			
200	150	300	21,00	24,1	25,00	22,0	22,0	25,0			
	150	600	53,30	52	52	47,40	47,40	43,0			
250	200	300	33,40	32,10	47	30,0	30,0	35,0			
	150	600	59,20	52,10	58,0	59,70	59,70	52,0			
300	200	600	58,0	58,0	58,0	60,66	60,66	58,0			
500	250	300	49,0	49,00	49,00	42,60	42,66	49,0			
	200	600	46,00	46,00	92,0	12,00	-	10,0			
350	250	600	85,15	85,15	89,0		-				
	300	300	65,4	65,40	66,0		-				
	250	600	73,4	73,40	98,0	104,35	104,35	92,0			
400	300	600	105,5	105,50	98,00	113,45	113,35	101,0			
	350	300	79,75	79,75	86,0	,	-	, .			
	300	600	108,10	108,10	127,0	-		-			
450	350	600	97,0	97,00	127,0	-	-				
	400	300	83,0	119,0	140,0	-	-				
	350	600	132,9	132,90	146,0	-		-			
500	400	600	144,35	130,00	153,0	-		-			
	450	300	125,0	147,0	118,0	-		-			
	400	800	190,00	220,00	212,0	-		-			
600	450	600	158,0	192,0	217,0	-		-			
	500	600	194,00	249,00	261,00	198,00		-			
700	600	600	252,00	292,00	285,0	-		-			
800	700	600	305,00	334,00	369,0	-		-			
900	800	600	364,00	396,00	461,0	364,00		-			
1000	900	600	461,00	481,00	576,0	438,00		-			
1200	1000	800	753,00	830,00	898,00	-		-			
1400	1200	760	846,0	Cons	sultar	-	-	-			
1500	1200	760	886,0		sultar	-		-			
1000	1400	570	825,0		sultar	-		-			
	1200	1090	1333,0		sultar	-		-			
1600	1400	890	1259,0		sultar	-		-			
	1500	890	1169,0		sultar	-		-			
1800	1600	970	1553,0		sultar	-		-			
2000	1800	1030	2049,0	Cons	sultar	-		-			

PLACA DE REDUCCIÓN

Abrev.: PN 10: **PR10** PN 16: **PR16** PN 25: **PR25**

				Dimension	nes y Masas				
DN	dn	Pi	N 10	PI	N 16	PI	PN 25		
DN	an	L	Masas	L	Masas	L	Masas		
		mm	kg	mm	kg	mm	kg		
100	50	40	4,80						
000	80	40	14,30						
200	100	40	12,65						
250	200	44	32,0						
350	150	48	38,0						
330	250	48	32,0						
	150	48	49,00						
400	200	48	39,5						
400	250	48	39,0						
	300	49	38,0						
450	350	52	45,0						
500	350	54	56,0						
300	400	54	55,00		Cons	ultar			
600	150	33	82,60						
000	450	50	94,0						
700	500	56	102,0						
900	700	63	165,0						
1000	700	63	222,0						
1000	800	68	209,0						
1400	800 (1)	81	514,0						
1400	1000 (1)	86	455,0						
1600	800 (3)	-19	1000,0						
1000	1200 (1)	94	613,0						
1800		Consultar							
2000		Consultar							


- (1) Forma 1 (3) Forma 3

PLACA CIEGA

DN 50 a 200

B

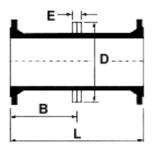
Abrev.: PN 10: **FC10** PN 16: **FC16** PN 25: **FC25**

		Dimensiones y Masas									
DN	F	PI	N 10	PN	N 16	PN 25					
DN	· ·	В	Masa	В	Masa	В	Masa				
	mm	mm	kg	mm	kg	mm	kg				
50	3	16,0	2,3	16,0	2,3	16,0	2,3				
80	3	16,0	3,8	16,0	3,8	16,0	3,8				
100	3	16,0	4,86	16,0	4,86	16,0	4,8				
150	3	16,0	9,00	16,0	9,00	17,0	8,3				
200	3	17,0	11,22	17,0	11,22	19,0	13,30				
250	3	19,0	19,00	19,0	19,0	21,5	21,00				
300	4	20,5	21,00	20,5	24,00	23,5	30,00				
350	4	20,5	32,20	22,5	35,80	26,0	43,0				
400	4	20,5	33,20	24,0	44,00	28,0	58,00				
450	4	21,5	57,20	26,0	75,5	30,5	87,0				
500	4	22,5	69,50	27,5	77,0	32,5	94,00				
600	5	25,0	90,30	31,0	121,00	37,0	144,0				
700	5	27,5	165,00	34,5	165,00	41,5	216,00				
800	5	30,0	228,00	38,0	236,00	46,0	304,0				
900	5	32,5	282,00	41,5	286,0	50,5	397,0				
1000	5	35,0	386,0	45,0	375,00	55,0	535,0				
1200	5	40,0	493,00	52,0	662,0	64,0	843,0				
1400	5	41,0	847,0	Consultar	Consultar	Consultar	Consultar				
1500	5	42,5	1027,0	Consultar	Consultar	Consultar	Consultar				
1600	5	44,0	1239,0	Consultar	Consultar	Consultar	Consultar				
1800	5	47,0	1717,0	Consultar	Consultar	Consultar	Consultar				
2000	5	50,0	2272,0	Consultar	Consultar	Consultar	Consultar				

Revestimiento: pintura bituminosa.

EMPALME BRIDA Y ESPIGA CON PASAMUROS

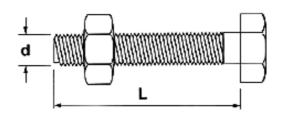
E → | → | D


Abrev.:

PN 10: **EPFAV10** PN 16: **EPFAV16** PN 25: **EPFAV25**

				Dimension	nes y Masas			
DN	L	В	D	E			Empuje Axial Máximo	
DIN			_	PN 10	PN 10 PN 16 PN 25			
	mm	mm	mm	mm	kg	kg	kg	kdaN
80	700	350	200	20		16,45		1,7
100	700	350	218	20	21	,30	32,0	3,0
150	700	350	270	20	33	,20	46,0	6,6
200	700	350	322	20	48,20	48,20	50,0	11,8
250	700	350	374	20	63,0	52,00	61,5	18,4
300	700	350	426	20	77,45	77,45	81,0	26,5
350	700	350	478	25	104,00	104,00	104,0	36,0
400	700	350	529	25	108,0	113,60	127,0	47,0
450	700	350	580	25	140,0	140,0	140,0	59,7
500	700	350	632	25	159,5	164,0	177,0	74,0
600	700	350	735	25	200,00	227,00	241,0	106,0
700	700	350	858	30	268,00	272,0	299,0	144,0
800	700	350	952	30	294,0	388,00	389,0	188,0
900	700	350	1095	30	396,00	408,0	474,0	238,0
1000	700	350	1198	40	450,00	498,00	619,0	295,0
1200	700	350	1405	40	641,00	695,0	817,0	425,0
1400	2000	1000	1675	45	1795,0	-	-	462,0
1500	2000	1000	1785	43	2440,0	-	-	530,1
1600	2400	1100	1915	60	2310,0	-	-	603,2
1800	3000	1000	2115	47	4505,0	-	-	763,4
2000	3000	1000	2325	55	6210,0	-	-	942,5

CARRETEL CON BRIDAS Y PASAMUROS


Abrev.: PN 10: **TOFAV10** PN 16: **TOFAV16** PN 25: **TOFAV25**

				Dimension	nes y Masas			
DN	L	В	D	E		Masas		Empuje Axial
Div	_			_	PN 10	PN 16	PN 25	Máximo Admisible
	mm	mm	mm	mm	kg	kg	kg	kdaN
80	700	350	200	20		18,4		1,7
100	700	350	218	20	23	,80	25,5	3,0
150	700	350	270	20	40	0,0	42,0	6,6
200	700	350	322	20	55,7	55,7	60,0	11,8
250	700	350	374	20	72,5	72,5	79,0	18,4
300	700	350	426	20	92,20	92,20	104,0	26,5
350	700	350	478	25	113,00	118,5	135,0	36,0
400	700	350	529	25	138,90	138,90	172,0	47,0
450	700	350	580	25	183	183	183	59,72
500	700	350	632	25	197	217,0	242,0	74,0
600	700	350	735	25	245,00	308,0	337,0	106,0
700	700	350	858	30	322	336,33	425,0	144,0
800	700	350	952	30	366	389,00	555,0	188,0
900	700	350	1095	30	470,0	557	683,0	238,0
1000	700	350	1198	40	575,00	616,00	889,0	295,0
1200	700	350	1405	40	778,00	979,0	1201,0	425,0
1400	2000	1000	1675	45	2051,0	Cons	Consultar	
1500	2000	1000	1785	43	2610,0	Cons	Consultar	
1600	2200	1100	1915	60	2775,0	Consultar		603,2
1800	3000	1000	2115	47	4803,0	Cons	sultar	763,4
2000	3000	1000	2325	55	6550,0	Cons	sultar	942,5

ACCESORIOS PARA JUNTAS CON BRIDAS: BULONES

Abrev.: PN 10: **PPF10** PN 16: **PPF16** PN 25: **PPF25**

					Di	mension	es y Mas	as					
		PN	10			PN	16			PN 25			
DN	d	L	Cant. por Junta	Masas por Junta	d	L	Cant. por Junta	Masas por Junta	d	L	Cant. por Junta	Masas por Junta	
	mm	mm	Junta	kg	mm	mm	Juilla	kg	mm	mm	Junta	kg	
50	16	80	4	0,7	16	80	4	0,7	16	80	4	0,7	
80	16	80	8	1,4	16	80	8	1,4	16	80	8	1,4	
100	16	80	8	1,4	16	80	8	1,4	20	90	8	2,6	
150	20	90	8	2,6	20	90	8	2,6	24	100	8	4,4	
200	20	90	8	2,6	20	90	12	3,96	24	100	12	6,6	
250	20	90	12	4,0	24	100	12	6,6	27	120	12	11,2	
300	20	90	12	4,0	24	100	12	6,6	27	120	16	14,9	
350	20	90	16	5,3	24	100	16	8,8	30	130	16	18,2	
400	24	100	16	8,8	27	120	16	14,9	33	130	16	23,5	
450	24	100	20	11,0	27	120	20	18,6	33	130	20	29,4	
500	24	100	20	11,0	30	130	20	22,8	33	130	20	29,4	
600	27	120	20	18,6	33	130	20	29,4	36	140	20	37,6	
700	27	120	24	22,3	33	130	24	35,4	39	150	24	56,9	
800	30	130	24	27,4	36	140	24	45,1	45	180	24	90,5	
900	30	130	28	31,9	36	140	28	52,6	45	180	28	105,6	
1000	33	130	28	41,2	39	150	28	66,4	52	200	28	156,8	
1200	36	140	32	60,2	45	180	32	120,7	52	200	32	179,2	
1400	39	180	36	98,7	45	210	36	146,9	56	260	36	282,6	
1500	39	180	36	98,7	52	230	36	217,0	56	260	36	282,6	
1600	45	190	40	154,4	52	230	40	241,1	56	260	40	314,0	
1800	45	190	44	169,9	52	230	44	265,2	64	300	44	457,6	
2000	45	190	48	185,3	56	260	48	376,8	64	300	48	499,2	

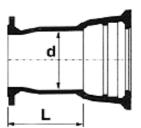
ACCESORIOS PARA JUNTAS CON BRIDAS: ARANDELAS

DN 50 a 1200 DE DI DE DI Elastómero DN 1400 a 2000 Anillo Metálico

PN 10: **ABF10** PN 16: **AAF16** PN 25: **AAF25** PN 10: **AAM10** PN 16: **AAM16** PN 25: **AAM25**

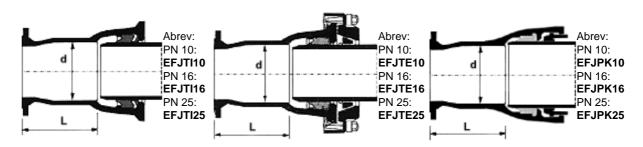
ABF: Arandela de goma SBR para brida

					Dimension	es y Masas	;				
DN	DI		PN 10			PN 16		PN 25			
DIN	DI	DE	е	Masas	DE	е	Masas	DE	е	Masas	
	mm	mm	mm	kg	mm	mm	kg	mm	mm	kg	
50	55	97	3,0	0,02	97	1,5	0,01	97	1,5	0,01	
80	85	130	3,0	0,03	130	1,5	0,02	130	1,5	0,02	
100	105	152	3,0	0,04	152	1,5	0,02	158	1,5	0,02	
150	155	208	3,0	0,06	208	1,5	0,04	213	1,5	0,04	
200	205	263	3,0	0,09	263	1,5	0,05	273	1,5	0,06	
250	255	318	3,0	0,14	318	1,5	0,07	330	1,5	0,08	
300	305	366	3,0	0,14	366	1,5	0,08	388	1,5	0,10	
350	355	426	3,0	0,17	431	1,5	0,10	446	1,5	0,12	
400	405	477	3,0	0,20	484	1,5	0,13	502	1,5	0,16	
450	455	525	3,0	0,22	545	1,5	0,17	557	1,5	0,19	
500	505	582	3,0	0,32	606	1,5	0,21	612	1,5	0,22	
600	605	682	3,0	0,35	721	1,5	0,28	717	1,5	0,27	
700	705	797	5,0	0,47	791	3,0	0,48	819	3,0	0,65	
800	805	904	5,0	0,58	898	3,0	0,59	928	3,0	0,80	
900	905	1004	5,0	0,65	998	3,0	0,66	1028	3,0	0,89	
1000	1005	1111	5,0	0,85	1115	3,0	0,87	1141	3,0	1,09	
1200	1205	1330	5,0	1,20	1330	3,0	1,18	1349	3,0	1,37	
1400	1448	1544	16,0	7,40	1544	16,0	7,40	1544	16,0	7,40	
1500	1541	1657	16,0	9,90	1657	16,00	9,90	1657	16,0	9,90	
1600	1651	1767	16,0	10,60	1767	16,0	10,60	1767	16,0	10,60	
1800	1851	1967	16,0	11,90	1967	16,0	11,90	1967	16,0	11,90	
2000	2047	2173	16,0	13,10	2173	16,0	13,10	2173	16,0	13,10	



CAPÍTULO 12 - PIEZAS DE TRANSICIÓN (SISTEMA BRIDADOS PARA ESPIGA Y ENCHUFE):

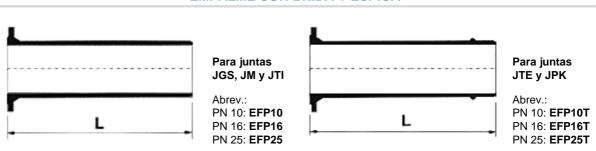
EMPALME BRIDA Y ENCHUFE - JGS


Abrev:

PN 10: **EFJGS10** PN 16: **EFJGS16** PN 25: **EFJGS25**

		Dii	mensiones y Masa	S				
DN	4	L		Masas				
DN	d	L L	PN 10	PN 16	PN 25			
	mm	mm	kg	kg	kg			
80	109	130		8,1				
100	130	130	9	,80	10,5			
150	183	135	15	5,70	16,5			
200	235	140	20,90	20,90	23,8			
250	288	145	28,75	28,75	33,7			
300	340	150	37,60	37,60	41,00			
350	393	155	44	49,8	56			
400	445	160	53,10	60,20	70,40			
450	498	165	69,60	74	85			
500	550	170	81,60	95,80	105,60			
600	655	180	106,0	133	147			
700	760	190	163,00	237	187,50			
800	865	200	210,0	219,5	244,0			
900	970	210	258,0	269,5	300,0			
1000	1075	220	321,0	361,00	380,0			
1200	1285	240	460,00	437,5	487,5			
1400	1477	310	716,0	768,0	897,0			
1500	1580	360	898,0	986,0	1122,0			
1600	1683	330	963,0	1046,0	1194,0			
1800	1889	387	1212,0	1305,0	1502,0			
2000	2095	395	1659,0	1784,0	2084,0			

EMPALME BRIDA Y ENCHUFE - JTI JTE JPK



	Dimensiones y Masas										
							Masas				
DN	N d L		JTI			JTE			JPK		
			PN 10	PN 16	PN 25	PN 10	PN 16	PN 25	PN 10	PN 16	PN 25
	mm	mm	kg	kg	kg	kg	kg	kg	kg	kg	kg
80	109	130		9,3			-			-	
100	130	130	9	,8	10,5		-			-	
150	183	135	15	5,7	16,5		-			-	
200	235	140	20,9	20,9	23,8		-			-	
250	288	145	28,75	28,75 28,75 33,7			-		-		
300	340	150	37,6	37,6 37,6		75,3	75,3	78,7		-	
350	393	155		-			88,8	95,0	-		
400	445	160		-		101,1	108,2	118,4	-		
450	498	165		-			Consultar		-		
500	550	170		-		155,2	169,4	179,2	-		
600	655	180		-		191,5	218,5	232,5	-		
700	760	190		-		307,7	381,7	332,2		-	
800	865	200		-		394,7	404,2	428,7		-	
900	970	210		-		463,05	474,55	505,05		-	
1000	1075	220		-		577,5	617,5	636,50		-	
1200	1285	240	-		707,8	685,3	735,3	-			
1400	1477	310	-				-				
1500	1580	360	-		-		Consulton				
1600	1683	330	-				-	Consultar			
1800	1884	475		-			-				
2000					(Consultar					

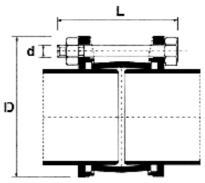
Revestimiento: internamente y externamente, pintura bituminosa.

EMPALME CON BRIDA Y ESPIGA

		Dimension	nes y Masas		
DN	L		Masas		
DN	_	PN 10	PN 16	PN 25	
	mm	kg	kg	kg	
80 *	350		8,5		
100 *	360		10,9	10,2	
150 *	380	1	7,7	16,6	
200 *	400	23,2	23,2	24,5	
250 *	420	32,0	32,0	35,5	
300	440	53,7 43,33		47,5	
350	460	52,0	52,0	64,0	
400	480	73,5	73,5	81,0	
450	500	78,0	84,0	96,0	
500	520	114,0	131,0	121,0	
600	560	152,0	173,0	168,0	
700	600	203,0	221,0	229,0	
800	600	246,0	248,0	294,0	
900	600	333,33	295,0	355,0	
1000	600	363,0	430,0	447,0	
1200	600	456,0	506,0	620,0	
1400	710	674,0			
1500	750	802,0			
1600	780	935,0	Cons	sultar	
1800	845	1256,0			
2000	885	1643,0			

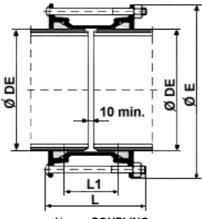
Revestimiento: internamente y externamente, pintura bituminosa.

^{*} Para estes diâmetros, só fabricamos EFP. Los empalmes EFPS son restritos a los diámetros donde existe lo acerrojado externo (DN \geq 300).



CAPÍTULO 13 - PIEZAS DE INTERVENCIÓN Y MONTAJE:

JUNTA GIBAULT


Abrev.:**JGI**

			Dimension	nes y Masas		
DN	D	d	L	Cantidad de Bulones	Masas con bulones	Presión Máxima de trabajo
	mm	mm	mm		kg	MPa
50	165	20	130	3	2,9	2,5
75	192	20	130	3	3,4	2,5
80	194	20	130	3	3,5	2,5
100	220	20	160	3	4,9	2,5
150	279	24	200	3	8,2	2,5
200	373	24	200	3	11,2	2,5
250	399	24	200	4	15,4	1,6
300	458	24	200	4	19,1	1,6
350	521	24	200	6	25,1	1,6
400	580	24	200	6	29,6	1,6
450	624	24	200	6	57,25	1,6
500	678	24	230	6	56,8	1,6
600	788	24	230	6	97,5	1,6

Revestimiento: internamente y externamente, pintura bituminosa.

COUPLING

Abrev.: COUPLING

DN		netro no DE				Di	Dimensiones y Masas					
	Mínima	Máximo	L			L1		Е		Masas		
	IVIIIIIIIO	Waxiiiio	PN10	PN16	PN25	PN10	PN16	PN25	=	PN10	PN16	PN25
	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
1400	1460	1464	29	92	295	17	78	180	1587	16	66	190
1500	1563	1567	29	92	457	17	78	180	1709	18	30	200
1600	1666	1670	292	295	457	178	180	180	1808	190	205	235
1800	1873	1877	41	1	Consultar	2	54	Consultar	2010	39	97	Consultar
2000	2074	2083	41	1	Consultar	2	54	Consultar	2215	43	31	Consultar

Revestimiento:

- Piezas metálicas (excepto bulones): interna y externamente con epoxy,
- Bulones: revestimiento a base de zinc.

Desviación angular admisible en la instalación (2 juntas):

DN 1400 a 1600: 2°

Torque de aprietes de los bulones:

DN 1400: 28 m.daN

DN 1500 a 2000: 36 m.daN

Descripción

ULTRAQUICK es un adaptador de bridas que permite la unión de la brida de cualquier equipamiento a una espiga de caño dejando la tolerancia necesaria para desmontar el equipamiento. **ULTRAQUICK**, debido a su concepción, acepta una gama de diámetros externos que cubre la mayoría de las cañerías de:

- hierro fundido gris
- hierro dúctil
- acero
- PVC
- fibrocemento

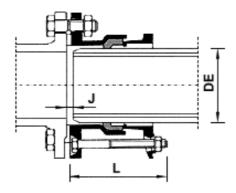
La concepción de la junta permite un desvío angular máximo de 6°. **ULTRAQUICK** está también protegido contra riesgos de corrosión:

- hierro dúctil revestido de epoxy
- tirantes protegidos contra la corrosión por zincado

Los adaptadores de bridas **ULTRAQUICK** fueron previstos para equipar redes de:

- bombeo y distribución de agua
- irrigación
- protección de incendios
- desagües

La larga gama de diámetros externos aceptados por esta junta permite considerarla como:


- adaptador de bridas universal
- pieza de reparación

ULTRAQUICK permite de esta manera reducir el almacenamiento de piezas de mantenimiento.

Vea También:

- Dimensiones y masas
- Caraterísticas constructivas
- Especificaciones técnicas

Abrev.: **ULTRAQUICK**

	Brida Conforme				Dimensiones y Masas					
Tipo	Norm	a ISO	Exter	no DE			Masas			
Про	PN 10	PN 16	Mínimo	Máximo		Nominal	Máximo	IVIASAS		
	D	N	mm	mm	mm	mm	mm	kg		
Α	5	0	51,0	71,0	140	7	25	4,5		
В	50-	-80	67,0	84,0	125	7	27	4,5		
С	8	80	84,0	102,0	137	7	28	4,6		
D	10	00	102,0	127,0	137	8	29	5,8		
E	15	50	127,0	153,0	137	9	30	8,0		
F	15	50	153,0	181,0	137	10	32	8,8		
Н	200	200	218,0	241,0	157	12	42	13,0		
J	250	250	265,0	290,0	157	14	50	16,0		
K	300	300	315,0	336,0	195	15	50	22,0		

Revestimiento:

- Piezas metálicas (excepto bulones): interna y externamente con epoxy,
- bulones: revestimiento a base de zinc.

Para garantizar la estanqueidad de la junta con bridas utilizar la arandela especial adecuada al ULTRAQUICK. Consúltenos.

Características Constructivas

Designación	Materiales
Cuerpo (1) y Contra-brida (3)	Hierro dúctil revestido de epoxy aplicado eletrostáticamente (espesor mínimo de 250 µ m)
Tirantes y roscas (4)	Acero protegido por zincado
Anillo de la junta con gran tolerancia (2)	Elastómero EPDM

Especificaciones Técnicas

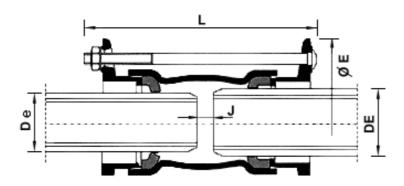
Adaptador de brida de gran tolerancia modelo **Saint-Gobain Canalização** (ULTRAQUICK), cuerpo y contra-brida en hierro fundido dúctil revestido interna y externamente de epoxy con espesor mínimo de $250\,\mu\text{m}$, anillo de junta de elastómero EPDM, tirantes y roscas de acero con revestimiento a base de zinc, extremidades con bridas compatibles con NBR 7675 (ISO 2531) PN 10 o 16. Desvío angular admisible en la instalación de 6° por junta y torque de apriete de los bulones de 6 m.daN.

Descripción

El empalme **ULTRALINK** permite unir dos extremidades de cañería. La concepción de la junta de gran tolerancia dá al **ULTRALINK** la posibilidad de unir caños con diámetros externos o materiales diferentes correspondientes a un mismo DN.

El desvío angular permitido es de 12° en toda la gama de diámetros. El empalme **ULTRALINK** fue previsto para equipar y reparar redes de (cualquier que sea el material):

- bombeo y distribución de agua
- irrigación
- protección de incendios
- desagües


La junta de gran tolerancia, sus posibilidades de deslizamiento y su longitud útil tornan a **ULTRALINK** un empalme polivalente para:

- reparar por encamisamiento las cañerías de diferentes tipos
- unir trechos de cañerías con origen, épocas o materiales diferentes.

Vea También:

- Dimensiones y masas
- Caraterísticas constructivas
- Especificaciones técnicas

Abrev.: ULTRALINK

Time	Cam Diâmetro I	Pressão de Serviço	Dimensiones y Masas				
Tipo	Mínimo	Máximo	PSA	L	J	E	Masas
	mm	mm	MPa	mm	mm	mm	kg
Α	51,0	71,0		262	25	181	6,0
В	67,0	84,0		222	28	183	5,6
С	84,0	102,0		175	30	200	4,3
D	102,0	127,0		210	32	236	6,5
E	127,0	153,0	1,6	210	37	265	8,5
F	153,0	181,0		220	42	294	9,4
Н	218,0	241,0		240	58	360	16,0
J	265,0	290,0		265	70	411	20,3
K	315,0	336,0		352	80	452	38,0

Revestimiento:

- Piezas metálicas (excepto bulones): interna y externamente con epoxy,
- parafusos: revestimiento a base de zinc.

Deflexão angular admissível no assentamento (2 juntas) = 12° Torque de aperto dos bulones: 6 m.daN

Características Constructivas

Designación	Materiales
Cuerpo (1) y Contra-brida (3)	Hierro dúctil revestido de epoxy aplicado eletrostaticamente (espessura mínima de 250
Tirantes y Porcas (4)	Aço protegido por zincagem
Anillo da junta con grande tolerância (2)	Elastômero EPDM

Especificaciones Técnicas

Luva de grande tolerância modelo **Saint-Gobain Canalização** (ULTRALINK), corpo y contra-brida em ferro fundido dúctil revestido interna y externamente de epoxy em pó depositado eletrostaticamente con espessura mínima de 250 μ m, anel de junta de elastômero EPDM, tirantes y porcas em aço zincado, deflexão angular admissível no assentamento de 6° por junta y torque de aperto dos parafusos de 6 m.daN. Clase de presión 16 kgf/cm2.